Sediment bound arsenic usually undergoes phase transformation processes when it is transported and buried in deeper settings. This work investigated anaerobic microbial mediated speciation change of the arsenic in offshore sediment and monitored the transformation process of oxyhydroxide associated arsenate to sulfide associated forms. The fate of arsenic and possible pathways of transformation were discussed based on quantitative analysis of aqueous and solid arsenic and iron, and qualitative characterization using X-ray absorption near edge spectroscopy (XANES). Arsenic was released and reduced upon development of anoxic conditions but was resequestered by authigenic minerals later. Most of the arsenic in the sediment was converted to orpiment-like material. Sulfide may have played double roles in arsenic redistribution process, i.e. promoting arsenic release from host oxyhydroxides in early stage and removal of arsenite from solution in the form of arsenic sulfide in later stage. The findings have implications about the pathways of arsenic transformation when arsenate is transported and buried below redox boundaries in offshore sediment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2011.10.041 | DOI Listing |
Ecol Evol
January 2025
Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Science Tianjin Normal University Tianjin China.
Understanding the adaptation of archaea to hypoxia is essential for deciphering the functions and mechanisms of microbes when suffering environmental changes. However, the dynamics and responses of archaea to the sedimentary hypoxia in Bohai Sea are still unclear. In this study, the diversity, composition, and distribution of archaeal community in sediment along an inshore-offshore transect across the oxygen-depleted area in the Bohai Sea were investigated in June, July, and August of 2021 by employing high-throughput sequencing of 16S rRNA gene.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
Ocean alkalinity enhancement (OAE) based on enhanced weathering of olivine (EWO) is a promising marine carbon dioxide removal (mCDR) technique. Previous research primarily focuses on the toxicological effects of potentially toxic metals (PTMs) released from olivine. In this Perspective, we explore the overlooked impacts of EWO on environmental media in two scenarios: olivine applied to beaches/shallow continental shelves and offshore dispersion by vessels.
View Article and Find Full Text PDFMar Environ Res
January 2025
School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China.
The Pearl River Estuary (PRE) has experienced an influx of metals and nutrients, predominantly from the Pearl River, which has led to a potential threat to the estuarine ecosystem. In this study, sediment samples were densely collected to clarify the accumulation, and source contributions of heavy metals (namely Hg, Zn, Cu, As, Pb, Cd, and Cr) in the PRE. The spatial distributions of these metals exhibited significant differences, with higher values detected in the offshore areas and lower values further away.
View Article and Find Full Text PDFSci Rep
January 2025
Geophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
The Red Sea remains a largely under-explored basin, with the Northern Egyptian Red Sea requiring further investigation due to limited borehole data, sparse case studies, and poor seismic quality. A petroleum system, regional structural cross-section, and geological block diagrams integrating onshore fieldwork from Gebel Duwi and offshore subsurface geology were utilized to assess the hydrocarbon potential of the Northern Egyptian Red Sea (NERS). The findings highlight that pre- and syn-rift organic-rich source units in the NERS could generate oil and gas, similar to the capped reservoirs of the Southern Gulf of Suez.
View Article and Find Full Text PDFToxics
November 2024
School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
The distribution of trace metals (TMs) in a continuous water body often exhibits watershed attributes, but the tidal gates of the coastal rivers may alter their transformation and accumulation patterns. Therefore, a tidal gate-controlled coastal river was selected to test the distribution and accumulation risks of Al, As, Cr, Cu, Fe, Mn, Ni, Sr, and Zn in the catchment area (CA), estuarine area (EA), and offshore area (OA). Associations between TMs and bacterial communities were analyzed to assess the feasibility of using bacterial parameters as ecological indicators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!