Background: Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks.
Description: PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database.
Conclusions: PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229461 | PMC |
http://dx.doi.org/10.1186/1752-0509-5-188 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!