Under fast dynamic loading conditions (e.g. high-energy impact), the load rate dependency of the intervertebral disc (IVD) material properties may play a crucial role in the biomechanics of spinal trauma. However, most finite element models (FEM) of dynamic spinal trauma uses material properties derived from quasi-static experiments, thus neglecting this load rate dependency. The aim of this study was to identify hyperelastic material properties that ensure a more biofidelic simulation of the IVD under a fast dynamic compressive load. A hyperelastic material law based on a first-order Mooney-Rivlin formulation was implemented in a detailed FEM of a L2-L3 functional spinal unit (FSU) to represent the mechanical behavior of the IVD. Bony structures were modeled using an elasto-plastic Johnson-Cook material law that simulates bone fracture while ligaments were governed by a viscoelastic material law. To mimic experimental studies performed in fast dynamic compression, a compressive loading velocity of 1 m/s was applied to the superior half of L2, while the inferior half of L3 was fixed. An exploratory technique was used to simulate dynamic compression of the FSU using 34 sets of hyperelastic material constants randomly selected using an optimal Latin hypercube algorithm and a set of material constants derived from quasi-static experiments. Selection or rejection of the sets of material constants was based on compressive stiffness and failure parameters criteria measured experimentally. The two simulations performed with calibrated hyperelastic constants resulted in nonlinear load-displacement curves with compressive stiffness (7335 and 7079 N/mm), load (12,488 and 12,473 N), displacement (1.95 and 2.09 mm) and energy at failure (13.5 and 14.7 J) in agreement with experimental results (6551 ± 2017 N/mm, 12,411 ± 829 N, 2.1 ± 0.2 mm and 13.0 ± 1.5 J respectively). The fracture pattern and location also agreed with experimental results. The simulation performed with constants derived from quasi-static experiments showed a failure energy (13.2 J) and a fracture pattern and location in agreement with experimental results, but a compressive stiffness (1580 N/mm), a failure load (5976 N) and a displacement to failure (4.8 mm) outside the experimental corridors. The proposed method offers an innovative way to calibrate the hyperelastic material properties of the IVD and to offer a more realistic simulation of the FSU in fast dynamic compression.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4005224DOI Listing

Publication Analysis

Top Keywords

hyperelastic material
20
material properties
20
fast dynamic
20
derived quasi-static
12
quasi-static experiments
12
material law
12
dynamic compression
12
material constants
12
compressive stiffness
12
material
11

Similar Publications

Analysis of the haemodynamic changes caused by surgical and transcatheter aortic valve replacements by means fluid-structure interaction simulations.

Comput Biol Med

January 2025

UCL Mechanical Engineering, University College London, UK; Ri.MED Foundation, Palermo, Italy; University of Palermo, Department of Engineering, Palermo, Italy. Electronic address:

Aortic valve replacements, both surgical and transcatheter, are nowadays widely employed treatments. Although clinically effective, these procedures are correlated with potentially severe clinical complications which can be associated with the non-physiological haemodynamics that they establish. In this work, the fluid dynamics changes produced by surgical and transcatheter aortic valve replacements are analysed and compared with an ideal healthy native valve configuration, employing advanced fluid-structure interaction (FSI) simulations.

View Article and Find Full Text PDF

The coagulation of fresh latex is one of the critical processes that impacts rubber quality during natural rubber processing. Constitutive relationships are the basis for the study of the mechanical properties of rubber materials and serve as a prerequisite for material simulation studies. However, studies on the effect of different coagulation methods on natural rubber constitutive relationships have yet to be carried out, and the current models used for natural rubber constitutive relationships need to be improved.

View Article and Find Full Text PDF

Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA.

View Article and Find Full Text PDF

In this work, a cost-effective, scalable pneumatic silicone actuator array is introduced, designed to dynamically conform to the user's skin and thereby alleviate localised pressure within a prosthetic socket. The appropriate constitutive models for developing a finite element representation of these actuators are systematically identified, parametrised, and validated. Employing this computational framework, the surface deformation fields induced by 270 variations in soft actuator array design parameters under realistic load conditions are examined, achieving predictive accuracies within 70 µm.

View Article and Find Full Text PDF

Hyperelastic materials are extensively incorporated in medical implants and microelectromechanical systems due to their large, elastic, recoverable strains. However, their mechanical properties are sensitive to processing parameters that may lead to inconsistent characterization. Various test setups have been employed for characterizing hyperelastic materials; however, they are often costly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!