Sodium 4-phenylbutyrate (4PBA) corrects trafficking of ΔF508-CFTR in Cystic Fibrosis (CF) epithelia, which is hypothesized to, at least in part, result from increased expression of Hsp70 (stress-induced 70 kDa heat shock protein). To identify other 4PBA-regulated proteins that may promote correction of ΔF508 trafficking, we performed differential display RT-PCR on mRNA from IB3-1 CF bronchiolar epithelial cells treated for 0-24 h with 1 mM 4PBA. In this screen, a STAT-3 (signal transducer and activator of transcription-3)-interacting protein, StIP-1 that regulates STAT-3 activation had transiently increased expression. StIP-1 is identical to Elongator protein 2 (Elp2), a component of the Elongator complex that regulates RNA polymerase II. Previous studies have suggested that Elongator regulates Hsp70 mRNA transcription, and that the Hsp70 promoter contains functional STAT-3-binding sites. We therefore tested the hypothesis that 4PBA increases Hsp70 expression by an Elongator- and STAT-3-dependent mechanism. 4PBA treatment of IB3-1 CF bronchiolar epithelial cells caused transiently increased expression of Hsp70 protein, as well as Elp2 protein and mRNA. Elp2 depletion by transfection of small interfering RNAs, reduced both Elp2 and Hsp70 protein expression. 4PBA also caused transient activation of STAT-3, and increased abundance of nuclear proteins that bind to the STAT-3-responsive element of the Hsp70 promoter. Luciferase reporter assays demonstrated that both Elp2 overexpression and 4PBA increase Hsp70 promoter activity, while Elp2 depletion blocked the ability of 4PBA to stimulate Hsp70 promoter activity. Together, these data suggest that Elp2 and STAT-3 mediate, at least in part, the stimulation of Hsp70 expression by 4PBA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3247989 | PMC |
http://dx.doi.org/10.1074/jbc.M111.293282 | DOI Listing |
Plant Physiol
December 2024
Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic.
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
The heat shock protein 70 (HSP70) family plays an important role in the growth and development of lettuce and in the defense response to high-temperature stress; however, its bioinformatics analysis in lettuce has been extremely limited. Genome-wide bioinformatics analysis methods such as chromosome location, phylogenetic relationships, gene structure, collinearity analysis, and promoter analysis were performed in the gene family, and the expression patterns in response to high-temperature stress were analyzed. The mechanism of in heat resistance in lettuce was studied by virus-induced gene silencing (VIGS) and transient overexpression techniques.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China. Electronic address:
Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various abiotic stress responses. However, their evolutionary mechanism of freezing tolerance remains poorly understood. In our previous transcriptomics study based on DNA methylation sequencing, the BnaHsfA2 was found to be significantly accumulated in winter rapeseed (Brassica rapa L.
View Article and Find Full Text PDFDev Comp Immunol
January 2025
State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
Heat shock cognate 70 (HSC70), a highly conserved molecular chaperone in the heat shock protein 70 (HSP70) family, plays an essential role in maintaining the homeostasis of the cellular environment. Furthermore, although previous studies have investigated potential function of HSC70 in innate antiviral immunity, further research is still required to fully elucidate its role. In this study, we cloned and characterized the HSC70 homolog gene from black carp (Mylopharyngodon piceus), which consists of 1950 nucleotides encoding 650 amino acids, migrates at approximately 71 kDa on SDS-PAGE, and is distributed in the cytoplasm.
View Article and Find Full Text PDFPlant Sci
November 2024
Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India. Electronic address:
Pyruvate is a central metabolite in cellular respiration and metabolism. It can neutralize reactive oxygen species (ROS), safeguard mitochondrial membrane potential, and regulate gene expression under oxidative stress. However, its role in abiotic stress tolerance in plants needs to be explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!