Background: Differentiation and maturation of dendritic cells yield a cell type with the ability to prime immune responses towards defence and destruction. 1,25(OH)2D3, the active form of vitamin D3, fosters the development of tolerogenic dendritic cells. This study aimed to evaluate the effects of 1,25(OH)2D3 on murine dendritic cell behaviour in vitro and in vivo.

Methods: Dendritic cells were differentiated from bone marrow cells of female C57Bl/6 mice in the presence or absence of 10(-8) M 1,25(OH)2D3 for 8 days (IL4 and GM-CSF). Maturation was induced for 48 h (IFNγ, LPS and BALB/C islet homogenate antigen).

Results: Bone marrow-derived dendritic cells displayed a different surface marker profile in the presence of 1,25(OH)2D3 with decreased MHC II, CD86 and CD80 and increased CCR5, DEC205, F4/80 and CD40, as well as lower IL6 and IL12 expression upon LPS/IFNγ stimulation. T-cell proliferation was significantly reduced when exposed to islet antigen-loaded 1,25D3-DCs as compared to control dendritic cells and IL4, IL10, TNFα and TGFβ levels were increased. In vivo, transfer of islet antigen-loaded control dendritic cells resulted in priming of the immune system and hyperacute islet allograft rejection (4/4), whereas this was prevented in 5/7 mice treated with islet antigen-loaded 1,25D3-DCs.

Conclusion: We conclude that in vitro 1,25(OH)2D3 exposure alters dendritic cell behaviour, converting them into a cell type that drives T cells away from destruction towards a regulatory phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dmrr.1275DOI Listing

Publication Analysis

Top Keywords

dendritic cells
24
dendritic cell
12
cell behaviour
12
islet antigen-loaded
12
dendritic
9
murine dendritic
8
behaviour vitro
8
cells
8
cell type
8
control dendritic
8

Similar Publications

Hemophagocytic lymphohistiocytosis (HLH) is a rare but aggressive and potentially lethal hyperinflammatory syndrome characterized by pathologic immune activation and excessive production of proinflammatory cytokines leading to tissue damage and multisystem organ failure. There is an urgent need for the discovery of novel targets and development of therapeutic strategies to treat this rare but deadly syndrome. Protein Arginine Methyltransferase 5 (PRMT5) mediates T cell-based inflammatory responses, making it a potential actionable target for the treatment of HLH.

View Article and Find Full Text PDF

Background: Helicobacter pylori (H. pylori), a specific bacterium capable of surviving in the acidic environment of the stomach, has been recognized as a group of causative agents of gastric cancer. Therefore, the development of mucosal vaccines against H.

View Article and Find Full Text PDF

Background: Low-grade glioma (LGG) is a primary brain tumor with relatively low malignancy. NCOA4 is a key regulator of ferritinophagy-related processes and is involved in the occurrence and development of many cancers. However, the role of NCOA4 in LGG remains poorly understood.

View Article and Find Full Text PDF

Metabolic syndrome and its effect on immune cells in apical periodontitis- a narrative review.

Clin Oral Investig

January 2025

Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.

Objectives: Apical periodontitis (AP) is an inflammatory immune response in periapical tissues caused by microbial infections. Failure of root canal treatment or delayed healing is often due to intracanal or extra-radicular bacteria. However, beyond microbial factors, the patient's systemic health can significantly influence the progression and healing of AP.

View Article and Find Full Text PDF

Neutrophils were historically considered a homogenous population of cells with functions limited to innate immunity against external threats. However, with the rise of immunotherapy, recent works have shown that neutrophils are also important actors in immuno-oncology. In this context, neutrophils appear as a more heterogenous population of cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!