Enantioselective syntheses of corynanthe alkaloids by chiral Brønsted acid and palladium catalysis.

Chemistry

Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.

Published: December 2011

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201103150DOI Listing

Publication Analysis

Top Keywords

enantioselective syntheses
4
syntheses corynanthe
4
corynanthe alkaloids
4
alkaloids chiral
4
chiral brønsted
4
brønsted acid
4
acid palladium
4
palladium catalysis
4
enantioselective
1
corynanthe
1

Similar Publications

Benzo-fused γ-lactams are fundamental in medicinal chemistry, acting as essential elements for various therapeutic agents due to their structural adaptability and capability to enhance biological activity. In their synthesis, transition metals play a pivotal role as catalysts, offering more efficient alternatives to traditional methods by facilitating C-N bond formation through mechanisms like intramolecular coupling. Recent advances have especially spotlighted transition-metal-catalyzed C-H amination reactions for directly converting C(sp)-H to C(sp)-N bonds, streamlining the creation of these compounds.

View Article and Find Full Text PDF

Multicomponent reactions (MCRs), highly sought-after methods to produce atom-, step-, and energy-economic organic syntheses, have been developed extensively. However, catalytic asymmetric MCRs, especially those involving radical species, remain largely unexplored owing to the difficulty in stereoselectively regulating the extraordinarily high reactivity of open-shell radical species. Herein, we report a conceptually novel catalytic asymmetric three-component radical cascade reaction of readily accessible glycine esters, α-bromo carbonyl compounds and 2-vinylcyclopropyl ketones via synergistic photoredox/Brønsted acid catalysis, in which three sequential C-C (σ/π/σ) bond-forming events occurred through a radical addition/ring-opening/radical-radical coupling protocol, affording an array of valuable enantioenriched unnatural α-amino acid derivatives bearing two contiguous stereogenic centers and an alkene moiety in moderate to good yield with high diastereoselectivity, excellent enantioselectivity and good -dominated geometry under mild reaction conditions.

View Article and Find Full Text PDF

A stereochemical model and origins of selectivity for the rhodium-catalyzed hydroselenation of styrene.

Dalton Trans

January 2025

Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.

A deeper understanding of the mechanisms underlying transition metal-catalyzed transformation is crucial for developing innovative strategies to synthesize chiral organoselenium compounds. In this study, we developed and investigated a three-layer chirality relay model for the rhodium-catalyzed asymmetric hydroselenation of alkenes through density functional theory (DFT) calculations. In the back layer of this model, the four bulky substituents on the phosphorus atom of the bidentate chiral MeO-BIPHEP ligand were positioned on axial and equatorial bonds, thereby influencing the configuration of the middle layer.

View Article and Find Full Text PDF

In organic synthesis, the solvent is the chemical compound that represents the largest proportion of the process. However, conventional solvents are often toxic and dangerous for the environment, and an interesting alternative is to replace them by water. In this context, catalyst surfactants allow both organic reagents in water to be solubilized and organic reactions to be catalyzed.

View Article and Find Full Text PDF

Chiral Phosphoric Acid-Catalyzed Asymmetric Synthesis of Axially Chiral Arylpyrazole.

Org Lett

January 2025

School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China.

A chiral phosphoric acid-catalyzed efficient, operationally simple, general method for straightforward syntheses of axially chiral arylpyrazole employing -alkyl of 3-aryl-5-aminopyrazoles reacting with azonaphthalenes was achieved. A wide variety of axially chiral heterobiaryl diamines in generally good yields with excellent enantioselectivities were obtained under mild conditions. In addition, a scaled-up experiment and postmodification of the chiral product further highlighted the synthetic utility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!