Modulation of rod photoreceptor output by HCN1 channels is essential for regular mesopic cone vision.

Nat Commun

Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Schleichstr. 4/3, D-72076 Tübingen, Germany.

Published: November 2011

Retinal photoreceptors permit visual perception over a wide range of lighting conditions. Rods work best in dim, and cones in bright environments, with considerable functional overlap at intermediate (mesopic) light levels. At many sites in the outer and inner retina where rod and cone signals interact, gap junctions, particularly those containing Connexin36, have been identified. However, little is known about the dynamic processes associated with the convergence of rod and cone system signals into ON- and OFF-pathways. Here we show that proper cone vision under mesopic conditions requires rapid adaptational feedback modulation of rod output via hyperpolarization-activated and cyclic nucleotide-gated channels 1. When these channels are absent, sustained rod responses following bright light exposure saturate the retinal network, resulting in a loss of downstream cone signalling. By specific genetic and pharmacological ablation of key signal processing components, regular cone signalling can be restored, thereby identifying the sites involved in functional rod-cone interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms1540DOI Listing

Publication Analysis

Top Keywords

modulation rod
8
cone vision
8
rod cone
8
cone signalling
8
cone
6
rod photoreceptor
4
photoreceptor output
4
output hcn1
4
hcn1 channels
4
channels essential
4

Similar Publications

Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs).

View Article and Find Full Text PDF

Effects of light on biological functions and human sleep.

Handb Clin Neurol

January 2025

Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.

The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.

View Article and Find Full Text PDF

Monte Carlo molecular simulations of curve-shaped rods show the propensity of such shapes to polymorphism revealing both smectic and polar nematic phases. The nematic exhibits a nanoscale modulated local structure characterized by a unique, polar, -symmetry axis that tightly spirals generating a mirror-symmetry-breaking organization of the achiral rods-form chirality. A comprehensive characterization of the polarity and its symmetries in the nematic phase confirms that the nanoscale modulation is distinct from the elastic deformations of a uniaxial nematic director in the twist-bend nematic phase.

View Article and Find Full Text PDF

Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.

View Article and Find Full Text PDF

Three fluorescent Zn coordaintion polymers (CPs) have been synthesized from the reactions of Zn(NO3)2∙6H2O, benzene-1,4-dicarboxylic acid (1,4-H2bdc), and angular carbazole-derived bispyridyl ligands (Cz-3,6-bpy or Cz-Pr-3,6-bpy). CPs 1-3 all adopt similar two-dimensional (2D) ring-and-rod layer structures, described as topologically 4-connected 2∙65 nets where the Zn(II) centers act as 4-connected nodes. CPs 1 and 2 are a pair of solvent-mediated supramolecular isomers where the former shows a two-fold interlocked 2D → 2D polyrotaxane-like entangled net and the latter reveals a four-fold interpenetrated 2D → 3D polyrotaxane entanglement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!