Disorders of blood pressure regulation-role of catecholamine biosynthesis, release, and metabolism.

Curr Hypertens Rep

Department of Endocrinology, Western Infirmary, Glasgow G11 6NT, UK.

Published: February 2012

Catecholamines (epinephrine and norepinephrine) are synthesised and produced by the adrenal medulla and postganglionic nerve fibres of the sympathetic nervous system. It is known that essential hypertension has a significant neurogenic component, with the rise in blood pressure mediated at least in part by overactivity of the sympathetic nervous system. Moreover, novel therapeutic strategies aimed at reducing sympathetic activity show promise in the treatment of hypertension. This article reviews recent advances within this rapidly changing field, particularly focusing on the role of genetic polymorphisms within key catecholamine biosynthetic enzymes, cofactors, and storage molecules. In addition, mechanisms linking the sympathetic nervous system and other adverse cardiovascular states (obesity, insulin resistance, dyslipidaemia) are discussed, along with speculation as to how recent scientific advances may lead to the emergence of novel antihypertensive treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11906-011-0239-2DOI Listing

Publication Analysis

Top Keywords

sympathetic nervous
12
nervous system
12
blood pressure
8
disorders blood
4
pressure regulation-role
4
regulation-role catecholamine
4
catecholamine biosynthesis
4
biosynthesis release
4
release metabolism
4
metabolism catecholamines
4

Similar Publications

Perivascular adipose tissue: a central player in the triad of diabetes, obesity, and cardiovascular health.

Cardiovasc Diabetol

December 2024

Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.

Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.

View Article and Find Full Text PDF

YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression.

J Transl Med

December 2024

Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Background: Neuroblastoma (NB), the most prevalent solid tumor in children, arises from sympathetic nervous system and accounts for 15% of pediatric cancer mortality. This malignancy exhibits substantial genetic and clinical heterogeneity, thus complicating treatment strategies. Poly(ADP-ribose) polymerase 1 (PARP1), a key enzyme catalyzing polyADP-ribosylation (PARylation), plays critical roles in various cellular processes, and contributes to tumorigenesis and aggressiveness.

View Article and Find Full Text PDF

Background: Pompe disease is a glycogen storage disease primarily affecting striated muscles. Despite its main manifestation in muscles, patients with Pompe disease may exhibit non-muscle symptoms, such as hearing loss, suggesting potential involvement of sensory organs or the nervous system due to glycogen accumulation.

Aims: This study aimed to evaluate the presence of concomitant small and large fiber neuropathy in patients with Pompe disease.

View Article and Find Full Text PDF

Heart rate variability parameters indicate altered autonomic tone in subjects with COVID-19.

Sci Rep

December 2024

Krannert Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.

COVID-19 is associated with long-term cardiovascular complications. Heart Rate Variability (HRV), a measure of sympathetic (SNS) and parasympathetic (PNS) control, has been shown to predict COVID-19 outcomes and correlate with disease progression but a comprehensive analysis that includes demographic influences has been lacking. The objective of this study was to determine the balance between SNS, PNS and heart rhythm regulation in hospitalized COVID-19 patients and compare it with similar measurements in healthy volunteers and individuals with cardiovascular diseases (CVD), while also investigating the effects of age, Body Mass Index (BMI), gender and race.

View Article and Find Full Text PDF

Disorders of Volume: Core Curriculum 2025.

Am J Kidney Dis

December 2024

Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington; VA Puget Sound Healthcare System, Seattle, Washington.

Historically, the paradigm for all maladies was associated with an imbalance of the 4 humors: blood, black bile, yellow bile, and phlegm. Although our understanding of disease has evolved significantly since the time of Hippocrates, a similar cornerstone of inpatient and ambulatory care involves understanding and correcting imbalances of volume. The kidneys are the principal organs controlling extracellular volume, capable of both sensing and altering salt retention through multiple redundant pathways, including the sympathetic nervous system and the renin-angiotensin-aldosterone system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!