AI Article Synopsis

Article Abstract

N-methyl-D-aspartate (NMDA) receptors are glutamate-gated cation channels that mediate excitatory neurotransmission in the central nervous system. In addition to glutamate, NMDA receptors are also activated by coagonist binding of the gliotransmitter, D-serine. Neuronal NMDA receptors mediate activity-dependent blood flow regulation in the brain. Our objective was to determine whether NMDA receptors expressed by brain endothelial cells can induce vasodilation of isolated brain arteries. Adult mouse middle cerebral arteries (MCAs) were isolated, pressurized, and preconstricted with norepinephrine. N-methyl-D-aspartate receptor agonists, glutamate and NMDA, significantly dilated MCAs in a concentration-dependent manner in the presence of D-serine but not alone. Dilation was significantly inhibited by NMDA receptor antagonists, D-2-amino-5-phosphonopentanoate and 5,7-dichlorokynurenic acid, indicating a response dependent on NMDA receptor glutamate and D-serine binding sites, respectively. Vasodilation was inhibited by denuding the endothelium and by selective inhibition or genetic knockout of endothelial nitric oxide synthase (eNOS). We also found evidence for expression of the pan-NMDA receptor subunit, NR1, in mouse primary brain endothelial cells, and for the NMDA receptor subunit NR2C in cortical arteries in situ. Overall, we conclude that NMDA receptor coactivation by glutamate and D-serine increases lumen diameter in pressurized MCA in an endothelial and eNOS-dependent mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293118PMC
http://dx.doi.org/10.1038/jcbfm.2011.161DOI Listing

Publication Analysis

Top Keywords

nmda receptors
20
nmda receptor
16
glutamate d-serine
12
nmda
9
middle cerebral
8
cerebral arteries
8
glutamate nmda
8
brain endothelial
8
endothelial cells
8
receptor subunit
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!