Insulin resistance due to nutrient excess: is it a consequence of AMPK downregulation?

Cell Cycle

Diabetes Research Unit, Section of Endocrinology, Department of Medicine, Boston University Medical Center, Boston, MA, USA.

Published: October 2011

It has long been known that excesses of glucose and branched chain amino acids, such as leucine, lead to insulin resistance in skeletal muscle. A recent study in incubated rat muscle suggests that both molecules may do so by virtue of their ability to downregulate the fuel sensing and signaling enzyme AMP-activated protein kinase (AMPK) and activate mTOR/p70S6 kinase (p70S6K) signaling. The results also demonstrated that inhibition of mTOR/p70S6K with rapamycin prevented the development of insulin resistance but had no effect on AMPK activity (Thr172 phosphorylation of its catalytic subunit). In contrast, activation of AMPK by both AICAR and α-lipoic acid led to the phosphorylation of specific molecules that diminished both mTOR/p70S6K signaling and insulin resistance. These findings suggest that downregulation of AMPK precedes mTOR/p70S6K activation in mediating glucose and leucine-induced insulin resistance, although the mechanism by which it does so remains to be determined. Also requiring study is how an excess of the two nutrients leads to AMPK downregulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356833PMC
http://dx.doi.org/10.4161/cc.10.20.17886DOI Listing

Publication Analysis

Top Keywords

insulin resistance
20
ampk
6
insulin
5
resistance nutrient
4
nutrient excess
4
excess consequence
4
consequence ampk
4
ampk downregulation?
4
downregulation? long
4
long excesses
4

Similar Publications

Objective: We investigated associations between per- and polyfluoroalkyl substances (PFAS) and changes in diabetes indicators from pregnancy to 12 years after delivery among women with a history of gestational diabetes mellitus (GDM).

Research Design And Methods: Eighty Hispanic women with GDM history were followed from the third trimester of pregnancy to 12 years after delivery. Oral and intravenous glucose tolerance tests were conducted during follow-up.

View Article and Find Full Text PDF

An insight on the additive impact of type 2 diabetes mellitus and nonalcoholic fatty liver disease on cardiovascular consequences.

Mol Biol Rep

January 2025

Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.

Background: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are associated with a multifactorial complicated aetiology that is often coexisting and has a strong and distinct connection with cardiovascular diseases (CVDs). In order to accomplish effective and appropriate therapeutic strategies, a deeper understanding of the bidirectional interaction between NAFLD patients, NAFLD patients with T2DM, and NAFLD patients with CVDs is required to control the concomitant rise in prevalence of these conditions worldwide. This article also aims to shed light on the epidemiology and mechanisms behind the relationship between T2DM, NAFLD and the related cardiovascular consequences.

View Article and Find Full Text PDF

Glucose Metabolic Abnormalities and Their Interaction With Defective Phosphate Homeostasis in Tumor-induced Osteomalacia.

J Clin Endocrinol Metab

January 2025

Department of Endocrinology, Key Laboratory of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.

Context: Phosphate homeostasis was compromised in tumor-induced osteomalacia (TIO) due to increased fibroblast growth factor 23 (FGF23) secretion. Nevertheless, the glucose metabolic profile in TIO patients has not been investigated.

Objectives: This work aimed to clarify the glucose metabolic profiles in TIO patients and explore their interaction with impaired phosphate homeostasis.

View Article and Find Full Text PDF

Objective: Type A insulin resistance syndrome (IRS), characterized by impaired insulin receptor function due to variants of the insulin receptor gene, manifests as severe insulin-resistant diabetes. Differentiation of type A IRS from type 2 diabetes on the basis of hyperinsulinemia can be challenging. Given the association between insulin receptor dysfunction and reduced insulin clearance, we evaluated the potential of the circulating C-peptide reactivity (CPR)/immunoreactive insulin (IRI) molar ratio, a marker of insulin clearance, for distinguishing type A IRS from type 2 diabetes.

View Article and Find Full Text PDF

Metabolic and insulin-resistant diseases, such as type 2 diabetes mellitus (T2DM), have become major health issues worldwide. The prevalence of insulin resistance in the general population ranges from 15.5% to 44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!