Anti-c-Fms antibody inhibits lipopolysaccharide-induced osteoclastogenesis in vivo.

FEMS Immunol Med Microbiol

Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Published: March 2012

It has been reported that lipopolysaccharide (LPS) has the ability to induce inflammation and osteoclastogenesis. Osteoclast formation is dependent on macrophage-colony-stimulating factor (M-CSF) and ligand for the receptor activator of necrosis factor-kB. In this study, the effect of antibody against c-Fms, which is the receptor of M-CSF, on LPS-mediated osteoclastogenesis was investigated in mice. LPS was administered with or without anti-c-Fms antibody into the supracalvaria of mice. The number of osteoclasts and the levels of mRNA for cathepsin K and tartrate-resistant acid phosphatase, which are osteoclast markers, in mice administered both LPS and anti-c-Fms antibody were lower than those in mice administered LPS alone. The level of tartrate-resistant acid phosphatase 5b as a marker of bone resorption in mice administered both LPS and anti-c-Fms antibody was also lower. Furthermore, the expression of the receptor activator of necrosis factor-kB, which is receptor activator of nuclear factor kappa-B ligand, was increased upon LPS administration, but the expression was inhibited by anti-c-Fms antibody. These results showed that anti-c-Fms antibody inhibits LPS-induced osteoclast formation. In conclusion, M-CSF and its receptor are potential therapeutic targets in bacterial infection-induced osteoclastogenesis, and anti-c-Fms antibody might be useful for inhibition of bacterial infection-induced bone destruction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-695X.2011.00888.xDOI Listing

Publication Analysis

Top Keywords

anti-c-fms antibody
28
receptor activator
12
mice administered
12
administered lps
12
antibody inhibits
8
osteoclast formation
8
activator necrosis
8
necrosis factor-kb
8
tartrate-resistant acid
8
acid phosphatase
8

Similar Publications

Osteoporosis morphology is characterized by bone resorption and decreases in micro-architecture parameters. Anti-osteoporosis therapy targets osteoclasts because bone resorption is a unique function of osteoclasts. Anti-c-fms antibodies against the receptor for macrophage colony-stimulating factor (M-CSF) inhibit osteoclast formation and bone resorption in vitro and in vivo.

View Article and Find Full Text PDF

Orthodontic relapse after orthodontic treatment is a major clinical issue in the dental field. However, the biological mechanism of orthodontic relapse is still unclear. This study aimed to establish a mouse model of orthodontic retention to examine how retention affects the rate and the amount of orthodontic relapse.

View Article and Find Full Text PDF

Bone remodeling is a complex process and it involves periods of deposition and resorption. Bone resorption is a process by which bone is broken down by osteoclasts in response to different stimuli. Osteoclast precursors differentiate into multinuclear osteoclasts in response to macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor Kappa-B ligand (RANKL).

View Article and Find Full Text PDF

Breast cancer cells preferentially home to the bone microenvironment, which provides a unique niche with a network of multiple bidirectional communications between host and tumor, promoting survival and growth of bone metastases. In the bone microenvironment, the c-fms proto-oncogene that encodes for the CSF-1 receptor, along with CSF-1, serves as one critical cytokine/receptor pair, functioning in paracrine and autocrine fashion. Previous studies concentrated on the effect of inhibition of host (mouse) c-fms on bone metastasis, with resulting decrease in osteolysis and bone metastases as a paracrine effect.

View Article and Find Full Text PDF

Effect of cytokines on osteoclast formation and bone resorption during mechanical force loading of the periodontal membrane.

ScientificWorldJournal

October 2014

Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.

Mechanical force loading exerts important effects on the skeleton by controlling bone mass and strength. Several in vivo experimental models evaluating the effects of mechanical loading on bone metabolism have been reported. Orthodontic tooth movement is a useful model for understanding the mechanism of bone remodeling induced by mechanical loading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!