Purpose: Acute respiratory failure is a relatively common complication in surgical patients, especially after abdominal surgery. Non-invasive ventilation (NIV) is increasingly used in the treatment of acute respiratory failure. We have assessed the usefulness of NIV in surgical patients with acute respiratory failure.
Methods: We retrospectively reviewed the medical charts of patients who were admitted to a surgical intensive care unit between March 2007 and February 2008 with acute respiratory failure. The patients who have got respiratory care for secondary reason such as sepsis and encephalopathy were excluded from this study.
Results: Of the 74 patients who were treated with mechanical ventilation, 15 underwent NIV and 59 underwent invasive ventilation. The causes of acute respiratory failure in the NIV group were atelectasis in 5 patients, pneumonia in 5, acute lung injury in 4, and pulmonary edema in 1, this group included 3 patients with acute respiratory failure after extubation. Overall success rate of NIV was 66.7%.
Conclusion: NIV may be an alternative to conventional ventilation in surgical patients with acute respiratory failure. Use of NIV may avoid re-intubation in patients who develop respiratory failure after intubation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204685 | PMC |
http://dx.doi.org/10.4174/jkss.2011.80.6.390 | DOI Listing |
Pulmonology
December 2025
Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
Pulmonology
December 2025
Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
Nasal high flow (NHF) therapy is an established form of non invasive respiratory support used in acute and chronic care. Recently, a new high flow nasal cannula with asymmetric prongs was approved for clinical use. The clinical benefits of the new cannula have not yet been defined and no evidence are available on the use of asymmetric NHF support in patient with Chronic Obstructive Pulmonary Disease (COPD).
View Article and Find Full Text PDFAdv Biotechnol (Singap)
January 2024
Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) Variants of Concern (VOCs), such as the Omicron sub-variants, present significant challenges in pandemic control due to their capacity to escape antibodies and breach vaccine protections. Discovering antibodies that can tolerate mutations in VOCs and understanding their underlying mechanisms is crucial for developing therapeutics for COVID-19 patients, particularly those for whom other therapies may be unsuitable. Here, we report the neutralization of the Omicron variant by FD20, a broadly active human monoclonal antibody.
View Article and Find Full Text PDFJ Gen Virol
January 2025
Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC.
RNA structures that are functionally important are defined as -acting RNA elements because their functions cannot be compensated for in trans. The -acting RNA elements in the 3' UTR of coronaviruses are important for replication; however, the mechanism linking the -acting RNA elements to their replication function remains to be established. In the present study, a comparison of the biological processes of the interactome and the replication efficiency between the 3' UTR -acting RNA elements in coronaviruses, including severe acute respiratory syndrome coronavirus 2, suggests that (i) the biological processes, including translation, protein folding and protein stabilization, derived from the analysis of the -acting RNA element interactome and (ii) the architecture of the -acting RNA elements and their interactomes are highly correlated with coronavirus replication.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea.
Unlabelled: Respiratory tract infections are major global health issues that require rapid and accurate diagnostic methods. Multiplex quantitative PCR (qPCR) is commonly used for pathogen detection in respiratory samples. However, the optimal specimen selection for detecting bacterial pathogens is not well-explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!