The aim of this study was to investigate the formation of fluorescent Schiff bases between proteins and lipid oxidation products in myofibrils. Myofibrils were prepared from pig M. longissimus dorsi and oxidized by hydroxyl (OH()) and superoxide (O(2)(-)) radical generating systems. Protein oxidation was measured by the carbonyl content and lipid oxidation was estimated by measurement of thiobarbituric acid reactive substances (TBARS). To avoid any bias due to their low solubility, fluorescent pigments were estimated directly in the solid state by a front-face fluorescence technique. Hydroxyl radicals generated high levels of lipid and protein oxidation as well as fluorescent pigments, whereas only fluorescence was affected by superoxide radicals. The formation of fluorescent pigments was linked not only to aldehyde production, but also to the availability of the amino groups of the myofibrillar protein side chains. Schiff bases could be implicated in protein aggregation with deleterious effect on meat quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meatsci.2006.10.028 | DOI Listing |
Molecules
January 2025
Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt.
Heterocyclic compounds, especially those containing the pyrazole moiety, are highly significant in organic chemistry and possess remarkable and diverse biological properties. The 5-aminopyrazole derivatives are key starting materials for the synthesis of numerous bioactive compounds such as pyrazolopyridine, pyrazolopyrimidine, pyrazoloquinazoline, and pyrazolotriazine derivatives. Many compounds inspired by the 5-aminopyrazole derivatives possess a wide spectrum of biological activities and medicinal applications such as antioxidants, anticancer agents, enzyme inhibitors, antimicrobials, and anti-tuberculosis activities.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
The scientific interest in the chemical modification of chitosan to increase its solubility and application has led to its conjugation with Schiff bases, which are interesting scaffolds endowed with diverse biological properties. The resultant chitosan-based Schiff bases (CSBs) are widely studied in scientific literature due to the myriad of activities exerted, both catalytic and biological, including anticancer, anti-inflammatory, antioxidant, and especially antimicrobial ones. Antimicrobial resistance (AMR) is one of the major public health challenges of the twenty-first century because it represents a threat to the prevention and treatment of a growing number of bacterial, parasitic, viral, and fungal infections that are no longer treatable with the available drugs.
View Article and Find Full Text PDFChem Biodivers
January 2025
Al-Azhar University - Assiut Branch, Pharmacology, Assiut, Cairo, EGYPT.
Herein, Schiff base was synthesized via reaction between 2-bromo-4-(trifluoromethoxy)aniline and 2-hydroxybenzaldehyde. The ligand was reacted with Cu(II) salt to obtain complex. The compounds were characterization using various techniques.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
The current research focused on the synthesis of two series of pyrazole derivatives and evaluation of their insecticidal effectiveness. In the first series, seven pyrazole Schiff bases 3a-g were successfully synthesized with yields (79-95%) by condensing phenylfuran-2-carbaldehyde with substituted pyrazole rings. In the second series, eleven amino acid-pyrazole conjugates 6a-k were synthesized utilizing acetic acid, sulfuric acid, morpholine, and EDC.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid E-28871, Spain.
The retinal Schiff base is a chromophore of significant biological relevance, as it is responsible for capturing sunlight in rhodopsins, which are photoactive proteins found in various living organisms. Additionally, this chromophore is subjected to various mechanical forces in different proteins, which alter its structure and, consequently, its properties. To thoroughly understand the mechanical response limits of the retinal excitation energy, a simple first-order formalism has been developed to quantify the chromophore's optimal mechanical response to applied external forces (on the order of tens of pN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!