Ontogeny of gene expression of group IB phospholipase A₂ isoforms in the red sea bream, Pagrus (Chrysophrys) major.

Comp Biochem Physiol A Mol Integr Physiol

Laboratory of Enzyme Chemistry, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.

Published: February 2012

The red sea bream (Pagrus major) was previously found to express mRNAs for two group IB phospholipase A(2) (PLA(2)) isoforms, DE-1 and DE-2, in the digestive organs, including the hepatopancreas, pyloric caeca, and intestine. To characterize the ontogeny of the digestive function of these PLA(2)s, the present study investigated the localization and expression of DE-1 and DE-2 PLA(2) genes in red sea bream larvae/juveniles and immature adults, by in situ hybridization. In the adults, DE-1 PLA(2) mRNA was expressed in pancreatic acinar cells. By contrast, DE-2 PLA(2) mRNA was detected not only in digestive tissues, such as pancreatic acinar cells, gastric glands of the stomach, epithelial cells of the pyloric caeca, and intestinal epithelial cells, but also in non-digestive ones, including cardiac and lateral muscle fibers and the cytoplasm of the oocytes. In the larvae, both DE-1 and DE-2 PLA(2) mRNAs first appeared in pancreatic tissues at 3 days post-hatching (dph) and in intestinal tissue at 1 dph, and expression levels for both gradually increased after this point. In the juvenile stage at 32 dph, DE-1 PLA(2) mRNA was highly expressed in pancreatic tissue, and DE-2 PLA(2) mRNA was detected in almost all digestive tissues, including pancreatic tissue, gastric glands, pyloric caeca, and intestine, including the myomere of the lateral muscles. In conclusion, both DE-1 and DE-2 PLA(2) mRNAs are already expressed in the digestive organs of red sea bream larvae before first feeding, and larvae will synthesize both DE-1 and DE-2 PLA(2) proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2011.10.022DOI Listing

Publication Analysis

Top Keywords

de-2 pla2
24
de-1 de-2
20
red sea
16
sea bream
16
pla2 mrna
16
pyloric caeca
12
pla2
9
group phospholipase
8
bream pagrus
8
digestive organs
8

Similar Publications

Ontogeny of gene expression of group IB phospholipase A₂ isoforms in the red sea bream, Pagrus (Chrysophrys) major.

Comp Biochem Physiol A Mol Integr Physiol

February 2012

Laboratory of Enzyme Chemistry, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.

The red sea bream (Pagrus major) was previously found to express mRNAs for two group IB phospholipase A(2) (PLA(2)) isoforms, DE-1 and DE-2, in the digestive organs, including the hepatopancreas, pyloric caeca, and intestine. To characterize the ontogeny of the digestive function of these PLA(2)s, the present study investigated the localization and expression of DE-1 and DE-2 PLA(2) genes in red sea bream larvae/juveniles and immature adults, by in situ hybridization. In the adults, DE-1 PLA(2) mRNA was expressed in pancreatic acinar cells.

View Article and Find Full Text PDF

Two cDNA encoding red sea bream DE-1 and DE-2 phospholipases A2 (PLA2) were cloned from the hepatopancreas of red sea bream, Pagrus (Chrysophrys) major. The cDNA of DE-1 PLA2 encoded a mature protein of 125 amino acid residues with an apparent signal peptide of 20 residues and propeptide of 5 residues, and that of DE-2 PLA2, a mature protein of 126 amino acid residues with an apparent signal peptide of 17 residues and propeptide of 6 residues. Comparison of the predicted amino acid sequences for mature DE-1 and DE-2 PLA2 showed that both proteins contain 14 cysteines including Cys 11 and 77 and a pancreatic loop, which are commonly conserved in group IB PLA2; however, the identity in amino acid sequence between DE-1 and DE-2 PLA2 was low (47%).

View Article and Find Full Text PDF

A novel phospholipase A2, designated as Oh-DE-2, was isolated from the venom of Ophiophagus hannah (king cobra) by successive chromatography on SP-Sephadex C-25, DE-52, and Q-Sepharose columns. Oh-DE-2 with pI 5.1 showed an apparent molecular weight of 14 kD as revealed by SDS-PAGE and gel filtration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!