Relationship between sensory attributes and volatile compounds qualifying dry-cured hams.

Meat Sci

Instituto de la Grasa (CSIC), Padre García Tejero, 4, E-41012, Sevilla, Spain.

Published: October 2008

This work studies the relationship between 45 volatile compounds and 17 sensory attributes (13 flavour perceptions) of dry-cured hams. Volatile compounds were quantified by SPME-GC while the sensory assessment was carried out by 13 panellists. GC-sniffing was used to determine the odour impact zones of the chromatogram. The odour thresholds of the volatile compounds and their sensory characterisation were determined by dilution analysis. Six sensory attributes (acorn odour and flavour, rancid odour, rancid taste, fat rancid and fat pungent flavours) were explained by regression equations (adjusted -R(2)⩾0.70) based on ten compounds: benzaldehyde, 2-heptanone, hexanal, hexanol, limonene, 3-methylbutanal, 3-methylbutanol, 2-nonanone, octanol, pentanol. Acorn flavour attribute was successfully emulated by mixing the volatile compounds selected by the equation. Its odour was evaluated by assessors that gave a sensory description that matches with the target. All the procedures performed for the elucidation of volatile-attribute relations showed a basic agreement in their results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meatsci.2007.12.015DOI Listing

Publication Analysis

Top Keywords

volatile compounds
20
sensory attributes
12
dry-cured hams
8
compounds sensory
8
compounds
6
volatile
5
sensory
5
odour
5
relationship sensory
4
attributes volatile
4

Similar Publications

Plant viruses have been known to alter host metabolites that influence the attraction of insect vectors. Our study investigated whether (CYVCV) infection influences vector attractiveness, focusing on the citrus whitefly, (Ashmead). Free choice assays showed that citrus whiteflies exhibited a preference for settling on CYVCV-infected lemon plants versus healthy control plants.

View Article and Find Full Text PDF

The members of the genus Mill. are notable for producing a diverse range of structurally intricate secondary metabolites, being the focus of current phytochemical research. Their importance is recognized as several species hold significant ethnopharmacological value, being traditionally used to address ailments in human systems, such as respiratory, gastrointestinal, and urinary conditions, among others.

View Article and Find Full Text PDF

The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves.

View Article and Find Full Text PDF

The genus (Lamiaceae family) comprises approximately 300 species, which are widely used in traditional medicine for their diaphoretic, antiseptic, hemostatic, and anti-inflammatory properties, but scarcely in official ones. Therefore, the study of holds promise for developing new medicinal products. In aqueous and aqueous-alcoholic soft extracts of the herb, 16 amino acids, 20 phenolics, and 10 volatile substances were identified by HPLC and GC/MS.

View Article and Find Full Text PDF

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!