The hsa-miR-5787 represses cellular growth by targeting eukaryotic translation initiation factor 5 (eIF5) in fibroblasts.

Biochem Biophys Res Commun

Department of Pharmacy, College of Pharmacy, CHA University, 222 Yatap-Dong, Bundang-Gu, Seongnam-Si, Republic of Korea.

Published: December 2011

MicroRNAs (miRNAs) are small non-coding RNAs that regulate diverse biological processes. We cloned novel small RNA from human mesenchymal stem cells (hMSCs) and termed microRNA-5787 (hsa-miR-5787) that met the criteria for a miRNA. The level of miR-5787 was elevated in senescent fibroblasts. Based on the target prediction algorithm and results that were obtained, we find that eukaryotic translation initiation factor 5 (eIF5) is a target of miR-5787. Similar to the over-expression of miR-5787, we showed that repression of eIF5 in fibroblasts negatively affected cell growth. Therefore, we propose that the miR-5787 represses cell growth, in part, by targeting eIF5.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2011.10.103DOI Listing

Publication Analysis

Top Keywords

growth targeting
8
eukaryotic translation
8
translation initiation
8
initiation factor
8
factor eif5
8
eif5 fibroblasts
8
cell growth
8
hsa-mir-5787 represses
4
represses cellular
4
cellular growth
4

Similar Publications

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

RNA-binding motif protein RBM39 enhances the proliferation of gastric cancer cells by facilitating an oncogenic splicing switch in MRPL33.

Acta Pharmacol Sin

January 2025

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.

Gastric cancer is a malignant gastrointestinal disease characterized by high morbidity and mortality rates worldwide. The occurrence and progression of gastric cancer are influenced by various factors, including the abnormal alternative splicing of key genes. Recently, RBM39 has emerged as a tumor biomarker that regulates alternative splicing in several types of cancer.

View Article and Find Full Text PDF

Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC.

Sci Rep

January 2025

Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.

SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) drive metastasis, the leading cause of death in individuals with breast cancer. Due to their low abundance in the circulation, robust CTC expansion protocols are urgently needed to effectively study disease progression and therapy responses. Here we present the establishment of long-term CTC-derived organoids from female individuals with metastatic breast cancer.

View Article and Find Full Text PDF

A niche in the context of microorganisms defines the specific ecological role or habitat inhabited by microbial species within an ecosystem. For the human commensal Malassezia, the skin surface is considered its primary niche, where it adapts to the skin environment by utilising lipids as its main carbon and energy source. However pathogenic characteristics of Malassezia include the production of allergens, immune modulation and excessive lipid utilisation, which result in several diseases such as pityriasis versicolor, seborrheic dermatitis, Malassezia folliculitis and atopic dermatitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!