Chemical, instrumental and sensory characteristics of cooked pork ham.

Meat Sci

Institute of Meat Hygiene and Technology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, 612 42 Brno, Czech Republic.

Published: December 2007

Instrumental, chemical and sensory parameters of cooked pork ham were evaluated. Principal component analysis was carried out on the basis of the instrumental variables related to colour and texture. The four PCs account for almost 94% of the total variance in the data set. The PCA only separated 3 hams with a(∗)>10. Hardness was correlated with non-collagen muscle protein (P⩽0.01), gumminess (P⩽0.01) and ash (P⩽0.05). Sensory evaluated tenderness showed positive significant correlation with L(∗) (P⩽0.01). The most important colour parameter seems to be a(∗), which was negatively correlated with sensory evaluated parameter colour (P⩽0.01). The PCA performed on all parameters (sensory, chemical and textural) discriminated two groups of hams differing in non-collagen muscle protein content and hardness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meatsci.2007.05.013DOI Listing

Publication Analysis

Top Keywords

cooked pork
8
pork ham
8
non-collagen muscle
8
muscle protein
8
sensory evaluated
8
sensory
5
chemical instrumental
4
instrumental sensory
4
sensory characteristics
4
characteristics cooked
4

Similar Publications

This study evaluated the performance of a deep-learning-based model that predicted cooking loss in the semispinalis capitis (SC) muscle of pork butts using hyperspectral images captured 24 h postmortem. To overcome low-scale samples, 70 pork butts were used with pixel-based data augmentation. Principal component regression (PCR) and partial least squares regression (PLSR) models for predicting cooking loss in SC muscle showed higher R values with multiplicative signal correction, while the first derivative resulted in a lower root mean square error (RMSE).

View Article and Find Full Text PDF

High-pressure treatment was utilized in this study to produce high-quality, reduced-sodium pork gels with desirable texture and sensory properties, addressing the challenge of maintaining quality in low-sodium meat products to meet health-conscious consumer demands. High-pressure treatment applied within the range of 150-200 MPa significantly reduced cooking loss while maintaining moisture content and provided an ideal network structure for reduced-sodium pork gels. High-pressure treatment at up to 100-200 MPa, in combination with added sodium chloride and sodium polyphosphate, was evaluated for its effects on gel texture, with results indicating that high-pressure treatment significantly improved breaking stress (increased by 10.

View Article and Find Full Text PDF

This work investigated the effects of curdlan gum-guar gum composite microgels (CG microgels) as a fat replacer on the gel properties, water distribution, and microstructures of pork meat batters, using techniques including rheometry, SEM, and LF-NMR. Between 55 °C and 80 °C, the addition of 30 % CG microgels enhanced the viscoelastic response of pork meat batters. Additionally, the CG microgels reduced cooking loss from 18.

View Article and Find Full Text PDF

Effects of varying levels of arginine (Arg) and aspartic acid (Asp) on the water-holding capacity (WHC) and eating quality of marinated pork meat were investigated. The addition of Arg significantly enhanced the WHC of marinated pork meat (P < 0.05) due to the increased pH levels of the meat.

View Article and Find Full Text PDF

In the oil dispersion of chitosan, the formation of a capillary bridge was triggered by adding a small amount of water to obtain an oleogel. With this method, the types of liquid oil and the ratio of oil/chitosan/water were explored to achieve an optimal oleogel. MCT performed best, followed by soybean oil, which was chosen for its edibility and cost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!