Mechanically separated seal meat (MSSM) at 10% (SM-10) and 20% (SM-20) or seal protein hydrolysate (SPH) at 1% (SPH-1) and 2% (SPH-2) prepared from MSSM were used to replace mechanically separated chicken meat (MSCM) in salami formulations. Cured products containing 10 or 20% MSSM had a deeper red colour than those of the controls as noted by Hunter L and a values. Samples containing 20% MSSM had a softer texture as determined by sensory and Kramer shear-compression test studies, which was supported by scanning electron micrographs. All samples were equally acceptable as determined by sensory evaluation, except for SM-20 salamis which were less favoured.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0309-1740(96)00038-1 | DOI Listing |
Nanoscale Adv
January 2025
Department of Production Engineering, Faculty of Mechanical Engineering, University of Aleppo Aleppo Syria
Adverse reactions caused by waterborne contaminants constitute a major hazard to the environment. Controlling the pollutants released into aquatic systems through water degradation has been one of the major concerns of recent research. Bismuth-based perovskites have exhibited outstanding properties in the field of photocatalysis.
View Article and Find Full Text PDFJBJS Essent Surg Tech
May 2024
Radboud University Medical Center, Nijmegen, The Netherlands.
Background: This video article describes the use of bone-anchored prostheses for patients with transtibial amputations, most often resulting from trauma, infection, or dysvascular disease. Large studies have shown that about half of all patients with a socket-suspended artificial limb experience limited mobility and limited prosthesis use because of socket-related problems. These problems occur at the socket-residual limb interface as a result of a painful and unstable connection, leading to an asymmetrical gait and subsequent pelvic and back pain.
View Article and Find Full Text PDFACS Sustain Chem Eng
January 2025
Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, Av. Los Castros s/n, 39005 Santander, Spain.
Although membrane technology is widely used in different gas separation applications, membrane manufacturers need to reduce the environmental impact during the membrane fabrication process within the framework of the circular economy by replacing toxic solvents, oil-based polymers, and such by more sustainable alternatives. These include environmentally friendly materials, such as biopolymers, green solvents, and surfactant free porous fillers. This work promotes the use of environmentally sustainable and low toxic alternatives, introducing the novel application of cellulose acetate (CA) as a biopolymer in combination with dimethyl carbonate (DMC) as a greener solvent and different inorganic fillers (Zeolite-A, ETS-10, AM-4 and ZIF-8) prepared without the use of toxic solvents or reactants.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:
Lignocellulosic nanofibers (LCNF), blending nano-scale cellulose and lignin, were carboxylated and integrated with PVA and baicalin to create a molecularly imprinted membrane (CLCNF-MINM). This innovation, leveraging reactive deep eutectic solvent technology and electrospinning, boosts adsorption capacity by 12.3-21.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
Polyimide (PI)-based gas separation membranes are of great interest in the field of H purification owing to their good thermal stability, chemical stability, and mechanical properties. Among polyimide-based membranes, intrinsically microporous polyimides are easily soluble in common organic solvents, showing great potential for fabricating hollow fiber gas separation membranes. However, based on the solution-diffusion model, improving the free volume or the movability of polymer chains can improve gas permeability, but would result in poor thermal stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!