While "classical" freezing (to ice I) is disruptive to the microstructure of meat, freezing to ice VI has been found to preserve it. Ice VI freeze-substitution microscopy showed no traces of structural alteration on muscle fibres compared with the extensive damage caused by ice I freezing. The different signs of the freezing volume changes associated with these two ice phases is the most likely explanation for the above effects. Ice VI exists only at high pressure (632.4-2216 MPa) but can be formed and kept at room temperature. It was found that its nucleation requires a higher degree of supercooling than ice I freezing does, both for pure water and meat. Monitoring of the freezing process (by temperature and/or pressure measurements) is, thus, essential. The possible applications of ice VI freezing for food and other biological materials and the nucleation behaviour of this ice phase are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meatsci.2003.07.003DOI Listing

Publication Analysis

Top Keywords

ice freezing
16
ice
10
freezing ice
8
freezing
7
freezing meat
4
meat supercooling
4
supercooling ultrastructural
4
ultrastructural studies
4
studies "classical"
4
"classical" freezing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!