Bubble statistics and positioning in superhelically stressed DNA.

Phys Rev E Stat Nonlin Soft Matter Phys

Laboratoire de Physique and Centre Blaise Pascal of the École Normale Supérieure de Lyon, Université de Lyon, CNRS UMR 5672, Lyon, France.

Published: September 2011

We present a general framework to study the thermodynamic denaturation of double-stranded DNA under superhelical stress. We report calculations of position- and size-dependent opening probabilities for bubbles along the sequence. Our results are obtained from transfer-matrix solutions of the Zimm-Bragg model for unconstrained DNA and of a self-consistent linearization of the Benham model for superhelical DNA. The numerical efficiency of our method allows for the analysis of entire genomes and of random sequences of corresponding length (10(6)-10(9) base pairs). We show that, at physiological conditions, opening in superhelical DNA is strongly cooperative with average bubble sizes of 10(2)-10(3) base pairs (bp), and orders of magnitude higher than in unconstrained DNA. In heterogeneous sequences, the mean degree of base-pair opening is self-averaging, while bubble localization and statistics are dominated by sequence disorder. Compared to random sequences with identical GC-content, genomic DNA has a significantly increased probability to open large bubbles under superhelical stress. These bubbles are frequently located directly upstream of transcription start sites.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.84.031912DOI Listing

Publication Analysis

Top Keywords

superhelical stress
8
unconstrained dna
8
superhelical dna
8
random sequences
8
base pairs
8
dna
7
bubble statistics
4
statistics positioning
4
positioning superhelically
4
superhelically stressed
4

Similar Publications

Transcription generates superhelical stress in DNA that poses problems for genome stability, but determining when and where such stress arises within chromosomes is challenging. Here, using G1-arrested S. cerevisiae cells, and employing rapid fixation and ultra-sensitive enrichment, we utilise the physiological activity of endogenous topoisomerase 2 (Top2) as a probe of transcription-induced superhelicity.

View Article and Find Full Text PDF

O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential, stress-sensing enzyme responsible for adding the O-GlcNAc monosaccharide to thousands of nuclear and cytoplasmic proteins to regulate cellular homeostasis. OGT substrates are found in almost all intracellular processes, and perturbations in protein O-GlcNAc levels have been implicated in proteostatic diseases, such as cancers, metabolic disorders, and neurodegeneration. This broad disease activity makes OGT an attractive therapeutic target; however, the substrate diversity makes pan-inhibition as a therapeutic strategy unfeasible.

View Article and Find Full Text PDF

Mapping deformation dynamics to composition of topologically-active DNA blends.

Soft Matter

November 2024

Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.

Blends of circular and linear polymers have fascinated researchers for decades, and the role of topology on their stress response and dynamics remains fervently debated. While linear polymers adopt larger coil sizes and form stronger, more pervasive entanglements than their circular counterparts, threading of circular polymers by linear chains can introduce persistent constraints that dramatically decrease mobility, leading to emergent rheological properties in blends. However, the complex interplay between topology-dependent polymer overlap and threading propensity, along with the large amounts of material required to sample many compositions, has limited the ability to experimentally map stress response to composition with high resolution.

View Article and Find Full Text PDF

Type II topoisomerases shape multi-scale 3D chromatin folding in regions of positive supercoils.

Mol Cell

November 2024

Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece. Electronic address:

Type II topoisomerases (TOP2s) resolve torsional stress accumulated during various cellular processes and are enriched at chromatin loop anchors and topologically associated domain (TAD) boundaries, where, when trapped, can lead to genomic instability promoting the formation of oncogenic fusions. Whether TOP2s relieve topological constraints at these positions and/or participate in 3D chromosome folding remains unclear. Here, we combine 3D genomics, imaging, and GapRUN, a method for the genome-wide profiling of positive supercoiling, to assess the role of TOP2s in shaping chromosome organization in human cells.

View Article and Find Full Text PDF

Topological DNA blends exhibit resonant deformation fields and strain propagation dynamics tuned by steric constraints.

Acta Biomater

December 2024

Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States. Electronic address:

Understanding how polymers deform in response to local stresses and strains, and how strains propagate from a local disturbance, are grand challenges in wide-ranging fields from materials manufacturing to cell mechanics. These dynamics are particularly complex for blends of polymers of distinct topologies, for which several different species-dependent mechanisms may contribute. Here, we use OpTiDDM (Optical Tweezers integrating Differential Dynamic Microscopy) to elucidate deformation fields and propagation dynamics of binary blends of linear, ring and supercoiled DNA of varying sizes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!