Real-time studies of evaporation-induced colloidal self-assembly by optical microspectroscopy.

Phys Rev E Stat Nonlin Soft Matter Phys

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box, 603, Beijing 100190, China.

Published: September 2011

Real-time monitoring of the whole growth process of evaporation-induced colloidal self-assembly has been conducted using an optical microspectroscopy setup. Our observations suggest that the assembly process can be divided into three different growth stages as evidenced by the variations detected in the reflectance spectra. The thickness variation of the growing colloidal crystal was monitored by examining the Fabry-Perot fringes in the reflectance spectra. Furthermore, the scalar wave approximation was utilized to analyze the evolution of optical properties with growth. More detailed information, including the time dependence of number of layers and volume fraction of water, has been revealed by comparing the experimental and calculated reflectance spectra. The present work demonstrates that in situ real-time microspectroscopy is a promising technique for monitoring and investigating the dynamic process of colloidal self-assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.84.031605DOI Listing

Publication Analysis

Top Keywords

colloidal self-assembly
12
reflectance spectra
12
evaporation-induced colloidal
8
optical microspectroscopy
8
real-time studies
4
studies evaporation-induced
4
colloidal
4
self-assembly optical
4
microspectroscopy real-time
4
real-time monitoring
4

Similar Publications

Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups.

View Article and Find Full Text PDF

Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel.

Nat Commun

January 2025

Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.

The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water.

View Article and Find Full Text PDF

Colloidal ionogels: Controlled assembly and self-propulsion upon tunable swelling.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China. Electronic address:

Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling.

View Article and Find Full Text PDF

Quantification of solvation forces with amplitude modulation AFM.

J Colloid Interface Sci

January 2025

Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Via R. Rubattino 81 20134 Milan, Italy. Electronic address:

Hypothesis: Interfacial solvation forces arise from the organisation of liquid molecules near solid surfaces. They are crucial to fundamental phenomena, spanning materials science, molecular biology, and technological applications, yet their molecular details remain poorly understood. Achieving a complete understanding requires imaging techniques, such as three-dimensional atomic force microscopy (3D AFM), to provide atomically resolved images of solid-liquid interfaces (SLIs).

View Article and Find Full Text PDF

Modularly organizing active micromachines into high-grade metamachines makes a great leap for operating the microscopic world in a biomimetic way. However, modulating the nonreciprocal interactions among different colloidal motors through chemical reactions to achieve the controllable construction of active colloidal metamachines with specific dynamic properties remains challenging. Here, we report the phototactic active colloidal metamachines constructed by shape-directed dynamic self-assembly of chemically driven peanut-shaped TiO colloidal motors and Janus spherical Pt/SiO colloidal motors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!