Molecular spiders are synthetic biomolecular walkers that use the asymmetry resulting from cleavage of their tracks to bias the direction of their stepping motion. Using Monte Carlo simulations that implement the Gillespie algorithm, we investigate the dependence of the biased motion of molecular spiders, along with binding time and processivity, on tunable experimental parameters, such as number of legs, span between the legs, and unbinding rate of a leg from a substrate site. We find that an increase in the number of legs increases the spiders' processivity and binding time but not their mean velocity. However, we can increase the mean velocity of spiders with simultaneous tuning of the span and the unbinding rate of a spider leg from a substrate site. To study the efficiency of molecular spiders, we introduce a time-dependent expression for the thermodynamic efficiency of a molecular motor, allowing us to account for the behavior of spider populations as a function of time. Based on this definition, we find that spiders exhibit transient motor function over time scales of many hours and have a maximum efficiency on the order of 1%, weak compared to other types of molecular motors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.84.031111 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning.
View Article and Find Full Text PDFFungal Syst Evol
December 2024
Plant Microbe Interaction Research Team, BIOTEC, National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
During entomopathogenic fungal surveys conducted in Thailand, 15 specimens tentatively classified under were identified. To gain a comprehensive understanding of their taxonomy, molecular phylogenies using combined LSU, , , and sequence data, together with morphological examination of several spp. from previous studies were conducted.
View Article and Find Full Text PDFFungal Syst Evol
December 2024
Programa de Pós-graduação em Botânica - DIPO 2, Instituto Nacional de Pesquisas da Amazônia - Inpa, Av. André Araújo 2936, 69067-375, Manaus, AM, Brazil.
Rhizomorphs are hair- or wire-like melanized structures with structural differentiation analogous to plant roots that help fungi spread over an area and find food resources. Some species of multiple groups of the and the produce different types of rhizomorphs. In the , the structures are largely found in , particularly in the , , and .
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Molecular Biosciences PhD Program, Middle Tennessee State University, Murfreesboro, TN, United States.
Riparian spiders are used in ecotoxicology as sentinels of bioavailable contaminants that are transferred from aquatic to terrestrial habitats via emergent aquatic insects. Spiders in the family Tetragnathidae are particularly of interest because a high proportion of their diet consists of emergent aquatic insects and their contaminant loads reflect the amount transferred through the food web to riparian predators. The transfer of contaminants can be determined through food web tracers such as stable isotopes and polyunsaturated fatty acids; however, it is unclear how contaminants and tracers vary over the course of a year.
View Article and Find Full Text PDFExp Appl Acarol
January 2025
Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!