Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aminopyrimidine structural motif can be found in diverse biologically active compounds. This study aimed to describe the antioxidant activity of a series of di- and tri-substituted 5-aminopyrimidines using in vitro (TEAC, LPO) and cell-based assays. 2,4,6-trisubstituted 5-aminopyrimidines displayed the highest activity in the TEAC and LPO assays whereas compounds with protected 5-aminogroup were active in the cellular assay. This is most likely because of their better membrane permeability and intracellular metabolic activation. In summary, we have identified the antioxidant activity of a series of substituted 5-aminopyrimidines and their potential prodrugs which may have implications in the treatment of oxidative stress-related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10715762.2011.638292 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!