Antigenic differences between rabies virus strains characterized with monoclonal antibodies presently define at least four serotypes within the Lyssavirus genus of the Rhabdoviridae family: classical rabies virus strains (serotype 1), Lagos bat virus (serotype 2), Mokola virus (serotype 3) and Duvenhage virus (serotype 4). The wide distribution of rabies-related virus strains (serotypes 2, 3 and 4) and above all, the weak protection conferred by rabies vaccines against some of them (principally Mokola virus) necessitates the development of new specific vaccines. We first determined the complete nucleotide sequence of a rabies virus strain of serotype 1 (Pasteur virus) and characterized the structure of the viral genes and their regulatory sequences. We then extended this study to the Mokola virus genome. Five non-overlapping open reading frames were found in both viruses and had similar sizes and positions in both. Similarities were also found in the mRNA start and stop sequences and at the genomic extremities. Comparison of both genomes helps to analyze the basis of the particular antigenicity of these two serotypes. The sequence homology in the region coding for the viral glycoprotein was only 58% between the two viruses, compared with 94% between different rabies virus strains within serotype 1. This comparison, extended to other unsegmented negative strand RNA viruses, gives new insight into the understanding of rhabdoviruses and paramyxoviruses. Furthermore, molecular cloning provides a rationale for the genetic engineering of a future vaccine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0378-1135(90)90141-h | DOI Listing |
STAR Protoc
January 2025
Lingang Laboratory, Shanghai 200031, China. Electronic address:
Preparing high-titer virus and performing accurate titer determination are critical to subsequent experiments. However, not all applied recombinant rabies viruses, such as the L-deleted virus, are equipped with fluorescent proteins for titration by fluorescence-activated cell sorting (FACS). Here, we present a quantitative reverse-transcription PCR (RT-qPCR) approach for titrating recombinant rabies virus.
View Article and Find Full Text PDFJ Virol
January 2025
Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.
Unlabelled: The genus includes seventeen viral species able to cause rabies, an acute and almost invariably fatal encephalomyelitis of mammals. Rabies virus (RABV), which represents the type species of the genus, is a multi-host pathogen that over the years has undergone multiple events of host-switching, thus occupying several geographical and ecological niches. In contrast, non-RABV lyssaviruses are mainly confined within a single natural host with rare spillover events.
View Article and Find Full Text PDFHeliyon
January 2025
Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Rabies is a serious zoonotic disease caused by the rabies virus (RABV). Despite the successful development of vaccines and efforts made in drug discovery, rabies is incurable. Therefore, development of novel drugs is of interest to the scientific community.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India.
Rabies is a deadly neurotropic, zoonotic disease with a mortality rate of 100% after symptoms appear. Rabies virus (RABV) is the primary cause of rabies disease in humans, and it mainly spreads via dog bites in developing countries. Over the course of RABV evolution, multiple RABV variants, called clades, have emerged.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
GABAergic neurons in basal forebrain (BF) nuclei project densely to all layers of the mouse main olfactory bulb (OB), the first relay in odor information processing. However, BF projection neurons are diverse and the contribution of each subtype to odor information processing is not known. In the present study, we used retrograde and anterograde tracing methods together with whole-brain light-sheet analyses, patch-clamp recordings coupled with optogenetic and chemogenetic approaches during spontaneous odor discrimination, and go/no-go odor discrimination/learning tests to characterize the synaptic targets in the OB of BF calretinin-expressing (CR+) GABAergic cells and to reveal their functional implications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!