2-(1-Adamant-yl)-1-(3-amino-phen-yl)ethanol.

Acta Crystallogr Sect E Struct Rep Online

Published: September 2011

In the crystal structure of the title compound, C(18)H(25)NO, mol-ecules are linked via O-H⋯N hydrogen bonds, forming chains parallel to the c axis. Additional weak N-H⋯O inter-actions stabilize the crystal packing. The adamantane cage consists of three fused cyclo-hexane rings in almost ideal chair conformations, with C-C-C angles in the range 107.9 (10)-111.3 (11)°.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200880PMC
http://dx.doi.org/10.1107/S1600536811034763DOI Listing

Publication Analysis

Top Keywords

2-1-adamant-yl-1-3-amino-phen-ylethanol crystal
4
crystal structure
4
structure title
4
title compound
4
compound c18h25no
4
c18h25no mol-ecules
4
mol-ecules linked
4
linked o-h⋯n
4
o-h⋯n hydrogen
4
hydrogen bonds
4

Similar Publications

The photoinduced reaction of [Pt(NO)] with pyridine or its derivatives (L) was found to result in the formation of [PtL](NO) salts in high yield. This transformation was successfully probed for methyl- and carboxyethyl-substituted pyridines, and the corresponding [PtL](NO) salts were isolated and fully characterized using single-crystal X-ray diffraction (SCXRD). Anation of the [Pt(py)] cationic complex with N was studied by H NMR spectroscopy in aqueous and water/dimethyl sulfoxide solutions of [Pt(py)](NO).

View Article and Find Full Text PDF

The reactions of LAlH (L = HC(CMeNAr), Ar = 2,6-PrCH) (1) with diphenylphosphane oxide [PhP(O)H], diphenylphosphinamide [PhP(O)NH], and diaryl/alkyl phosphane [(RO)P(O)H (R = Ph, or Pr)] afford their corresponding compounds with compositions LAl(H)OP(Ph) (2), LAl[OP(Ph)] (3), LAl{[N(H)P(O)(Ph)][OP(Ph)]} (4), LAl(OPr) (5), and LAl(OPh) (6), respectively. These reactions probably undergo a process of dehydrogenation coupling, deaminating dehydrogenation coupling, or chain-breaking coupling. It is noteworthy to mention that the reaction of compound 1 with 2 equiv.

View Article and Find Full Text PDF

Background: The use of bacterial vaccines as a potential Bacterial-Based Cancer Therapy (BBCT) presents an innovative approach, transforming these vaccines into multifunctional tools capable of serving dual roles in medicine.

Materials And Methods:  This study aimed to conduct in vitro, immunity-independent experiments to investigate the anticancer properties of vaccine-derived bacterial toxoids on various cancer cell lines. Six concentrations of the DTP vaccine (5 x 10-4, 25 x 10-5, 125 x 10-6, 625 x 10-7, 312 x 10-7, and 15 x 10-6 µg/ml) were tested on two cancer cell lines (SKG and HCAM) and a normal Rat Embryonic Fibroblast (REF) cell line.

View Article and Find Full Text PDF

A new diterpenoid, carneadiol, isolated from Nocardia carnea IFM 12324.

J Nat Med

January 2025

Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.

A new diterpenoid, carneadiol (1), with an unprecedented tricyclic carbon skeleton, was isolated from the culture extracts of Nocardia carnea IFM 12324. The structure of compound 1 was elucidated using spectral studies, including various NMR data. The absolute configuration of 1 was determined using X-ray crystallographic analysis with the crystalline sponge method.

View Article and Find Full Text PDF

Multifunctional Graphdiyne Enables Efficient Perovskite Solar Cells via Anti-Solvent Additive Engineering.

Nanomicro Lett

January 2025

CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!