To evaluate the role of erythrocyte (RBC) membrane proteins in the invasion and maturation of Plasmodium falciparum, we have studied, in culture, abnormal RBCs containing quantitative or qualitative membrane protein defects. These defects included hereditary spherocytosis (HS) due to decreases in the content of spectrin [HS(Sp+)], hereditary elliptocytosis (HE) due to protein 4.1 deficiency [HE(4.1(0))], HE due to a spectrin alpha I domain structural variant that results in increased content of spectrin dimers [HE(Sp alpha I/65)], and band 3 structural variants. Parasite invasion, measured by the initial uptake of [3H]hypoxanthine 18 hr after inoculation with merozoites, was normal in all of the pathologic RBCs. In contrast, RBCs from six HS(Sp+) subjects showed marked growth inhibition that became apparent after the first or second growth cycle. Preincubation of HS(Sp+) RBCs in culture for 3 days did not alter these results. Normal parasite growth was observed in RBCs from one HS subject with normal membrane spectrin content. The extent of decreased parasite growth in HS(Sp+) RBCs closely correlated with the extent of RBC spectrin deficiency (r = 0.90). Homogeneous subpopulations of dense HS RBCs exhibited decreased parasite growth to the same extent as did HS whole blood. RBCs from four HE subjects showed marked parasite growth inhibition, the extent of which correlated with the content of spectrin dimers (r = 0.94). RBCs from two unrelated subjects with structural variants of band 3 sustained normal parasite growth. Decreased growth in the pathologic RBCs was not the result of decreased ATP or glutathione levels or of increased RBC hemolysis. We conclude that abnormal parasite growth in these RBCs is not the consequence of metabolic or secondary defects. Instead, we suggest that a functionally and structurally normal host membrane is indispensable for parasite growth and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC54739 | PMC |
http://dx.doi.org/10.1073/pnas.87.18.7339 | DOI Listing |
Int J Parasitol Drugs Drug Resist
January 2025
Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland. Electronic address:
Alveolar echinococcosis (AE) is a severe zoonotic disease caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis. We recently showed that E. multilocularis metacestode vesicles scavenge large amounts of L-threonine from the culture medium.
View Article and Find Full Text PDFBull Math Biol
January 2025
Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
Mosquitoes are important vectors for the transmission of some major infectious diseases of humans, i.e., malaria, dengue, West Nile Virus and Zika virus.
View Article and Find Full Text PDFInt J Legal Med
January 2025
University of Alicante, Department of Environmental Sciences and Natural Resources, PO Box 99, Alicante, E-03080, Spain.
The range of the oriental latrine fly (Chrysomya megacephala) is currently expanding. It coexists with another blowfly with a similar ecology, the green bottle fly (Lucilia sericata), one of the most abundant species in carrion during warm months. It is essential to understand the influence of temperature, larval substrate type, and larval competition on the development rates of these necrophagous calliphorids to evaluate the role and the adaptation of C.
View Article and Find Full Text PDFJ Insect Sci
January 2025
Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
Unraveling the numerous factors that drive phenotypic variation in trait expression among animals has long presented a significant challenge. Whereas traits like growth and adult size are often heritable and are passed on from one generation to the next, these can be significantly affected by the quality and quantity of resources provided by one or both parents to their offspring. In many vertebrates, such as birds and mammals, parents raise their young until adult, providing food, shelter, and protection.
View Article and Find Full Text PDFJ Insect Sci
January 2025
Department of Plant Science, McGill University, Montréal, Canada.
The Lepidopteran pest Trichoplusia ni and the parasitoid wasp Trichogramma brassicae represent a fascinating biological system, important for sustainable agricultural practices but challenging to observe. We present a nondestructive method based on micro-CT scanning technology (CT: computed tomography) for visualizing the internal parts of caterpillar embryos and of emerging parasitoids from infected eggs. Traditional methods of microscopic observation of the opaque egg contents require staining or dissection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!