Purpose: To evaluate the effects of the lack of osteopontin (OPN) and the administration of anti-OPN antibody on inflammation and vascular endothelial growth factor (VEGF) expression in choroidal tissue and on the development of choroidal neovascularization (CNV) after retinal photocoagulation in mice.
Methods: CNV was induced in one eye each of 20 C57BL/6-background OPN-deficient mice or 20 wild-type littermates. In another series of experiments, CNV was induced in 40 C57BL/6 mice treated with intraperitoneal administration of 400 μg anti-OPN (SLAYGLR) neutralizing antibody or control IgG. Four laser spots were prepared in each eye. At day 14, the size of the CNV was evaluated by high-resolution angiography with fluorescein isothiocyanate (FITC)-dextran. Six wild-type or six knockout mice also received photocoagulation and processed for histology. mRNA expression of OPN, VEGF, and F4/80 macrophage antigen in laser-irradiated choroidal tissues was analyzed at day 3 in wild-type or knockout mice as well as in wild-type mice treated with anti-OPN antibody or control antibody.
Results: Photocoagulation upregulated OPN expression in choroidal tissue. Histology did not uncover the effects of the lack of OPN on the healing of laser injury in choroid. The lack of OPN or systemic administration of anti-OPN antibody suppressed mRNA expression of VEGF and macrophage invasion in choroidal tissue. FITC-dextran angiography showed that lacking OPN or systemic anti-OPN antibody reduced the size of laser-induced CNV.
Conclusions: OPN is upregulated in laser-irradiated choroidal tissue. Endogenous OPN is required for macrophage inflammation and VEGF expression in choroidal tissue and for CNV development after retinal photocoagulation in mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.10-7050 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
School of Graduate, Dalian Medical University, Dalian City, China.
Purpose: To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice.
Methods: Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro.
Diagnostics (Basel)
January 2025
Department of Obsetrics and Gynaecology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53100, Turkey.
: The aim of our study was to evaluate the retinal nerve fiber layer (RNFL) and macular and choroidal thicknesses in women with different phenotypes of polycystic ovary syndrome (PCOS), and compare these measurements with those of healthy women of reproductive age. : This prospective case-control study included 120 eyes of 120 women with PCOS, with each of the four distinct phenotypes comprising 30 eyes of 30 women. Additionally, 30 eyes from 30 healthy women were included in the control group.
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Department of Ophthalmology, Faculty of Medicine, Hitit University, Çorum, Turkey.
Purpose: To examine the detailed vascular and morphological characteristics of the choroidal tissue in subjects with myopia.
Methods: A total of 111 subjects with myopia were included in the study. The study was conducted in three groups according to spherical equivalent(SE).
Front Cell Neurosci
January 2025
Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia.
Introduction: The choroid plexus is located in the cerebral ventricles. It consists of a stromal core and a single layer of cuboidal epithelial cells that forms the blood-cerebrospinal barrier. The main function of the choroid plexus is to produce cerebrospinal fluid.
View Article and Find Full Text PDFBMC Biol
January 2025
Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
Background: Uveal melanoma (UM) is the most common intraocular tumor in adults, arises either de novo from normal choroidal melanocytes (NCMs) or from pre-existing nevi that stem from NCMs and are thought to harbor UM-initiating mutations, most commonly in GNAQ or GNA11. However, there are no commercially available NCM cell lines, nor is there a detailed protocol for developing an oncogene-mutated CM line (MutCM) to study UM development. This study aimed to establish and characterize premalignant CM models from human donor eyes to recapitulate the cell populations at the origin of UM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!