A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nicotinamide mononucleotide adenylyl transferase 1 protects against acute neurodegeneration in developing CNS by inhibiting excitotoxic-necrotic cell death. | LitMetric

Hypoxic-ischemic (H-I) injury to the developing brain is a significant cause of morbidity and mortality in humans. Other than hypothermia, there is no effective treatment to prevent or lessen the consequences of neonatal H-I. Increased expression of the NAD synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1) has been shown to be neuroprotective against axonal injury in the peripheral nervous system. To investigate the neuroprotective role of Nmnat1 against acute neurodegeneration in the developing CNS, we exposed wild-type mice and mice overexpressing Nmnat1 in the cytoplasm (cytNmnat1-Tg mice) to a well-characterized model of neonatal H-I brain injury. As early as 6 h after H-I, cytNmnat1-Tg mice had strikingly less injury detected by MRI. CytNmnat1-Tg mice had markedly less injury in hippocampus, cortex, and striatum than wild-type mice as assessed by loss of tissue volume 7 d days after H-I. The dramatic protection mediated by cytNmnat1 is not mediated through modulating caspase3-dependent cell death in cytNmnat1-Tg brains. CytNmnat1 protected neuronal cell bodies and processes against NMDA-induced excitotoxicity, whereas caspase inhibition or B-cell lymphoma-extra large (Bcl-XL) protein overexpression had no protective effects in cultured cortical neurons. These results suggest that cytNmnat1 protects against neonatal HI-induced CNS injury by inhibiting excitotoxicity-induced, caspase-independent injury to neuronal processes and cell bodies. As such, the Nmnat1 protective pathway could be a useful therapeutic target for acute and chronic neurodegenerative insults mediated by excitotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223466PMC
http://dx.doi.org/10.1073/pnas.1107325108DOI Listing

Publication Analysis

Top Keywords

cytnmnat1-tg mice
12
nicotinamide mononucleotide
8
mononucleotide adenylyl
8
adenylyl transferase
8
acute neurodegeneration
8
neurodegeneration developing
8
developing cns
8
cell death
8
neonatal h-i
8
wild-type mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!