Excess dietary iodine differentially affects thyroid gene expression in diabetes, thyroiditis-prone versus -resistant BioBreeding (BB) rats.

Mol Nutr Food Res

Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, Ottawa, Ontario, Canada.

Published: December 2011

Scope: To identify genes involved in the susceptibility to iodine-induced autoimmune thyroiditis.

Methods And Results: Diabetes, thyroiditis-prone (BBdp) and -resistant (BBc) rats were fed either a control or a high-iodine diet for 9 wk. Excess iodine intake increased the incidence of insulitis and thyroiditis in BBdp rats. BBdp rats fed the high-iodine diet that did not develop thyroiditis had higher mRNA levels of Fabp4, Cidec, perilipin, Pparγ and Slc36a2 than BBdp rats fed the control diet and BBc rats fed either the control or the high-iodine diet. BBdp rats fed the high-iodine diet that did develop thyroiditis had higher mRNA levels of Cidec, Icam1, Ifitm1, and Slpi than BBdp rats fed the control diet and BBc rats fed either the control or the high-iodine diet. BBdp rats that did develop thyroiditis had lower mRNA levels of Fabp4, perilipin and Slc36a2 but higher mRNA levels of Icam1, Ifitm1 and Slpi than BBdp that did not develop thyroiditis. Excess dietary iodine also increased the protein levels of Fabp4, Cidec and perilipin in BBdp rats.

Conclusion: Differential expression of thyroid genes in BBdp versus BBc rats caused by excess dietary iodine may be implicated in autoimmune thyroiditis and insulitis pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201100299DOI Listing

Publication Analysis

Top Keywords

rats fed
28
bbdp rats
24
fed control
20
high-iodine diet
20
bbc rats
16
develop thyroiditis
16
mrna levels
16
excess dietary
12
dietary iodine
12
control high-iodine
12

Similar Publications

Postmenopausal women are at a higher risk of developing dyslipidemia and osteoporosis due to estrogen deficiency, necessitating regular vitamin D supplementation and the use of cholesterol inhibitors, respectively, to prevent these conditions. Despite current treatments, alternatives are needed to address both conditions simultaneously. Ergosterol, a precursor of vitamin D, is a fungal sterol converted to brassicasterol by 7-dehydrocholesterol reductase, a cholesterol biosynthesis enzyme that converts 7-dehydrocholesterol (a precursor of vitamin D) into cholesterol.

View Article and Find Full Text PDF

Global healthcare systems are under tremendous strain due to the increasing prevalence of neurodegenerative disorders. Growing data suggested that overconsumption of high-fat/high-carbohydrates diet (HFHCD) is associated with enhanced incidence of metabolic alterations, neurodegeneration, and cognitive dysfunction. Functional foods have gained prominence in curbing metabolic and neurological deficits.

View Article and Find Full Text PDF

The prevalence of metabolic syndrome has been exponentially increasing in recent decades. Thus, there is an increasing need for affordable and natural interventions for this disorder. We explored the effect of chrysin, a dietary polyphenol, on hepatic lipid and glycogen accumulation, metabolic dysfunction-associated fatty liver disease (MAFLD) activity score and oxidative stress and on hepatic and adipose tissue metabolism in rats presenting metabolic syndrome-associated conditions.

View Article and Find Full Text PDF

Our previous study demonstrated that γ-cyclodextrin (γ-CD)-perilla oil inclusion complexes increase plasma α-linolenic acid and eicosapentaenoic acid levels in healthy rats without adverse effects. The present study examined the effects of perilla oil, γ-CD, and their inclusion complexes on rats fed cholic acid (CA) to mimic the elevated gastrointestinal 12-hydroxylated (12OH) bile acid levels in high-fat diet-fed rats. Rats fed CA (CA group) tended to have higher AST, ALT, plasma total cholesterol (T-CHO), and triglyceride (TG) levels compared to controls fed a standard diet without CA.

View Article and Find Full Text PDF

Insulin Receptor Substrate-2 Regulates the Secretion of Growth Factors in Response to Amino Acid Deprivation.

Int J Mol Sci

January 2025

Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

Insulin receptor substrates (IRSs) are well-known mediators of the insulin and insulin-like growth factor (IGF)-I signaling pathways. We previously reported that the protein levels of IRS-2, a molecular species of IRS, were upregulated in the livers of rats fed a protein-restricted diet. This study aimed to elucidate the physiological role of IRS-2, whose level increases in response to protein restriction in cultured hepatocyte models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!