Nanomedicine, although in a nascent stage of development at present, is already a reality. Several pharmaceutical products using this modern technology are already on the market. Nanotechnology offers many potential benefits to medical research. Nanoparticle-based drug carriers can increase the efficacy and safety of drugs by enhancing capacity, improving solubility, combining multiple drugs, protecting against metabolism, and controlling release. Nanoparticles can also form the basis of multifunctional drug delivery vehicles by combining targeting, imaging, and therapeutic moieties. Multifunctional nanoparticles have tremendous potential to treat human diseases. The use of non-viral carriers (nanoparticles) can also improve the cellular/nuclear uptake of corresponding nucleotides. Preclinical characterization of nanoparticles intended for medical applications is complicated-due to the variety of materials used, their unique surface properties, and multifunctional nature. It is hard to predict what precise course nanomedicine will take in years to come. It is, however, very likely that this relatively young research area will become a driving force behind a vast revolution in medical treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00011-011-0393-7 | DOI Listing |
Nucleic Acids Res
December 2024
Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
Specialized or secondary metabolites are small molecules of biological origin, often showing potent biological activities with applications in agriculture, engineering and medicine. Usually, the biosynthesis of these natural products is governed by sets of co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To share information about BGCs in a standardized and machine-readable way, the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated in 2015.
View Article and Find Full Text PDFGenes (Basel)
October 2024
Department of Anatomic Pathology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile.
Although a lack of diversity in genetic studies is an acknowledged obstacle for personalized medicine and precision public health, Latin American populations remain particularly understudied despite their heterogeneity and mixed ancestry. This gap extends to COVID-19 despite its variability in susceptibility and clinical course, where ethnic background appears to influence disease severity, with non-Europeans facing higher hospitalization rates. In addition, access to high-quality samples and data is a critical issue for personalized and precision medicine, and it has become clear that the solution lies in biobanks.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary.
Due to the availability, scalability, and low immunogenicity, bovine milk-derived extracellular vesicles (MEVs) are increasingly considered to be a promising carrier of nanomedicines for future therapy. However, considering that extracellular vesicles (EVs) are of biological origin, different sources of EVs, including the host origin and the specific cells that produce the EVs, may have different effects on the structure and function of EVs. Additionally, MEVs play an important role in immune regulation, due to their evolutionary conserved cargo, such as cytokines and miRNAs.
View Article and Find Full Text PDFCommun Biol
October 2024
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
Microbiome-directed dietary interventions such as microbiota-directed fibers (MDFs) have a proven track record in eliciting responses in beneficial gut microbes and are increasingly being promoted as an effective strategy to improve animal production systems. Here we used initial metataxonomic data on fish gut microbiomes as well as a wealth of a priori mammalian microbiome knowledge on α-mannooligosaccharides (MOS) and β-mannan-derived MDFs to study effects of such feed supplements in Atlantic salmon (Salmo salar) and their impact on its gut microbiome composition and functionalities. Our multi-omic analysis revealed that the investigated MDFs (two α-mannans and an acetylated β-galactoglucomannan), at a dose of 0.
View Article and Find Full Text PDFBrief Bioinform
September 2024
Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China.
High affinity is crucial for the efficacy and specificity of antibody. Due to involving high-throughput screens, biological experiments for antibody affinity maturation are time-consuming and have a low success rate. Precise computational-assisted antibody design promises to accelerate this process, but there is still a lack of effective computational methods capable of pinpointing beneficial mutations within the complementarity-determining region (CDR) of antibodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!