The diboranes(4) bis(catecholato)diborane (B(2)Cat(2)) and bis(pinacolato)diborane (B(2)Pin(2)) are important precursors for organoboronic esters, which are versatile reagents for the formation of carbon-carbon bonds. A new catalytic synthesis for these compounds starts from catecholborane or pinacolborane and gives the dehydrocoupling products B(2)Cat(2) and B(2)Pin(2) with turnover numbers of up to 11,600 (see scheme).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201104854 | DOI Listing |
J Am Chem Soc
December 2024
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
Molecules
November 2024
Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China.
Ionic liquids have been utilized in numerous significant applications within the field of chemistry, particularly in organic chemistry, due to their unique physical and chemical properties. In the realm of asymmetric transition-metal-catalyzed transformations, chiral ionic-liquid-supported ligands and their corresponding transition-metal complexes have facilitated these processes in unconventional solvents, especially ionic liquids and water. These innovative reaction systems enable the recycling of transition-metal catalysts while producing optically active organic molecules with comparable or even higher levels of chemo-, regio-, and stereoselectivity compared to their parent catalysts.
View Article and Find Full Text PDFOrg Lett
December 2024
Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.
Enamides have emerged as robust alternatives for enamines, exhibiting versatile reactivity for further synthetic modifications, including nucleophilic addition, cycloaddition, and asymmetric hydrogenation. While transition-metal-catalyzed cross-coupling of alkenyl (pseudo)halides with amides has been widely employed to construct this valuable scaffold, it suffers from some limitations, such as the need for transition-metal catalysts and the preparative synthesis of alkenyl (pseudo)halides. In this study, we report a mild and convenient stereoretentive decarboxylative amidation of α,β-unsaturated carboxylic acids with easily procurable 1,4,2-dioxazol-5-ones, providing a practical synthetic route to enamides.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
Transition metal-catalyzed ring opening and expansion reactions of silacyclobutanes (SCBs) constitute an atom- and step-economical strategy to construct value-added silicon-containing chemicals. Despite extensive studies, the reaction of SCBs with simple alkenes has only one precedent. Moreover, most reported reactions of SCBs use late transition metals (Pd, Ni, Rh) as catalysts.
View Article and Find Full Text PDFChem Rec
December 2024
Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India.
Metal-nitrenes are valuable reactive intermediates for synthesis and are widely used to construct biologically relevant scaffolds, complexes and functionalized molecules. The ring expansion of cyclic molecules via single-nitrogen-atom insertion via nitrene or metal-nitrenoid intermediates has emerged as a promising modern strategy for driving advantageous nitrogen-rich compound synthesis. In recent years, the catalytic insertion of a single nitrogen atom into carbocycles, leading to N-heterocycles, has become an important focus of modern synthetic approaches with applications in medicinal chemistry, materials science, and industry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!