Deficits in prefrontal cholinergic function are implicated in cognitive impairment in many neuropsychiatric diseases, but acetylcholine's specific role remains elusive. Rhesus monkeys with selective lesions of cholinergic input to prefrontal cortex (PFC) were unimpaired in tests of decision making and episodic memory that require intact PFC, but were severely impaired on a spatial working memory task. These observations are consistent with a specific role for prefrontal acetylcholine in working memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432567 | PMC |
http://dx.doi.org/10.1038/nn.2971 | DOI Listing |
Biol Psychiatry
January 2025
Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China. Electronic address:
Background: Minimally verbal children with autism are understudied and lack effective treatment options. Personalized continuous theta-burst stimulation (cTBS) targeting the amygdala and its circuitry may be a potential therapeutic approach for this population.
Methods: In a double-blind randomized controlled trial, minimally verbal children with autism (ages 2-8 years) received 4 weeks of cTBS.
Neuroimage
January 2025
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA. Electronic address:
Noninvasive brain stimulation of the primary motor cortex has been shown to alter therapeutic outcomes in stroke and other neurological conditions, but the precise mechanisms remain poorly understood. Determining the impact of such neurostimulation on the neural processing supporting motor control is a critical step toward further harnessing its therapeutic potential in multiple neurological conditions affecting the motor system. Herein, we leverage the excellent spatio-temporal precision of magnetoencephalographic (MEG) imaging to identify the spectral, spatial, and temporal effects of high-definition transcranial direct current stimulation (HD-tDCS) on the neural responses supporting motor control.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Centre for Clinical Neurosciences, McMaster University, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, Canada. Electronic address:
Background: Neurofilament light chain (NfL) is a cytoskeletal protein that supports neuronal structure. Blood NfL levels are reported to be higher in diseases where myelin is damaged. Studies investigating intracortical myelin (ICM) in bipolar disorder (BD) have reported deficits in ICM maturation over age.
View Article and Find Full Text PDFMult Scler Relat Disord
December 2024
IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy. Electronic address:
Background: Multiple sclerosis (MS) is a demyelinating disease characterized by balance and gait impairment, fatigue, anxiety, depression, and diminished quality of life. Transcranial direct current stimulation (tDCS) has emerged as an effective intervention for managing these symptoms.
Objective: This study aims to investigate the efficacy of remotely supervised tDCS (RS-tDCS) applied to the left dorsolateral prefrontal cortex, in conjunction with a telerehabilitation (TR) program, on motor (balance and gait), cognitive (executive functions), and participation outcomes (fatigue, anxiety, depression, and quality of life) in persons with MS (pwMS).
Nat Commun
January 2025
Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.
Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!