Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Murine hepatocytes become polyploid and then undergo ploidy reversal and become aneuploid in a dynamic process called the ploidy conveyor. Although polyploidization occurs in some types of human cells, the degree of aneuploidy in human hepatocytes is not known. We isolated hepatocytes derived from healthy human liver samples and determined chromosome number and identity using traditional karyotyping and fluorescence in situ hybridization. Similar to murine hepatocytes, human hepatocytes are highly aneuploid. Moreover, imaging studies revealed multipolar spindles and chromosome segregation defects in dividing human hepatocytes. Aneuploidy therefore does not necessarily predispose liver cells to transformation but might promote genetic diversity among hepatocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244538 | PMC |
http://dx.doi.org/10.1053/j.gastro.2011.10.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!