Sustained axon regeneration induced by co-deletion of PTEN and SOCS3.

Nature

F.M. Kirby Neurobiology Center, Children's Hospital, Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.

Published: November 2011

A formidable challenge in neural repair in the adult central nervous system (CNS) is the long distances that regenerating axons often need to travel in order to reconnect with their targets. Thus, a sustained capacity for axon regeneration is critical for achieving functional restoration. Although deletion of either phosphatase and tensin homologue (PTEN), a negative regulator of mammalian target of rapamycin (mTOR), or suppressor of cytokine signalling 3 (SOCS3), a negative regulator of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, in adult retinal ganglion cells (RGCs) individually promoted significant optic nerve regeneration, such regrowth tapered off around 2 weeks after the crush injury. Here we show that, remarkably, simultaneous deletion of both PTEN and SOCS3 enables robust and sustained axon regeneration. We further show that PTEN and SOCS3 regulate two independent pathways that act synergistically to promote enhanced axon regeneration. Gene expression analyses suggest that double deletion not only results in the induction of many growth-related genes, but also allows RGCs to maintain the expression of a repertoire of genes at the physiological level after injury. Our results reveal concurrent activation of mTOR and STAT3 pathways as key for sustaining long-distance axon regeneration in adult CNS, a crucial step towards functional recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240702PMC
http://dx.doi.org/10.1038/nature10594DOI Listing

Publication Analysis

Top Keywords

axon regeneration
20
pten socs3
12
sustained axon
8
negative regulator
8
regeneration
6
regeneration induced
4
induced co-deletion
4
pten
4
co-deletion pten
4
socs3
4

Similar Publications

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).

View Article and Find Full Text PDF

Electric field stimulation directs target-specific axon regeneration and partial restoration of vision after optic nerve crush injury.

PLoS One

January 2025

Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.

Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.

View Article and Find Full Text PDF

Background: A 73‐year‐old female with a 3 year history of Alzheimer’s disease was treated within the protocol of The Alzheimer’s Autism and Cognitive Impairment Stem Cell Treatment Study (ACIST), an IRB approved clinical study registered with clinicaltrials.gov NCT 03724136.

Method: The procedure consists of bone marrow aspiration, cell separation using an FDA cleared class 2 device, and intravenous and intranasal administration of the stem cell fraction.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of weight- and non-weight-bearing exercises on the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, corticospinal axon regrowth and regeneration-related proteins following spinal cord injury (SCI). Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control group (n=6), SCI+sedentary group (SED, n=6), SCI+treadmill exercise group (TREAD, n=6), and SCI+swimming exercise group (SWIM, n=6). All rats in the SCI group were given the rest for 2 weeks after SCI, and then they were allowed to engage in low-intensity exercise for 6 weeks on treadmill device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!