Indole RSK inhibitors. Part 2: optimization of cell potency and kinase selectivity.

Bioorg Med Chem Lett

Department of Medicinal Chemistry, Boehringer-Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, CT 06877, USA.

Published: January 2012

A series of inhibitors for the 90 kDa ribosomal S6 kinase (RSK) based on an 1-oxo-2,3,4,5-tetrahydro-1H-[1,4]diazepino[1,2-a]indole-8-carboxamide scaffold were optimized for cellular potency and kinase selectivity. This led to the identification of compound 24, BIX 02565, an attractive candidate for use in vitro and in vivo to explore the role of RSK as a target for the treatment heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2011.10.029DOI Listing

Publication Analysis

Top Keywords

potency kinase
8
kinase selectivity
8
indole rsk
4
rsk inhibitors
4
inhibitors optimization
4
optimization cell
4
cell potency
4
selectivity series
4
series inhibitors
4
inhibitors kda
4

Similar Publications

The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis.

View Article and Find Full Text PDF

Cold atmospheric plasma potentiates ferroptosis via EGFR(Y1068)-mediated dual axes on GPX4 among triple negative breast cancer cells.

Int J Biol Sci

January 2025

Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.

Cold atmospheric plasma (CAP) has been proposed as an emerging onco-therapeutics that can specifically kill cancer cells without harming healthy cells. Here we explore its potency in triggering ferroptosis in transformed cells using triple negative breast cancer as the disease model. Through the whole transcriptome sequencing, mass spectrometry analysis, point mutation, and a series of and molecular assays, we identified two signaling axes centered at EGFR(Y1068), i.

View Article and Find Full Text PDF

Therapeutics promoting the endogenous production of IL-10 have the potential to restore homeostasis in inflammatory disorders such as inflammatory bowel disease (IBD). Here we describe the identification of a series of IL-10 upregulators based on a pyrimidyl-piperidine scaffold through a high throughput phenotypic CD4 T-cell multiplex assay. optimization of the initial hit yielded a lead with good potency and an clearance profile, compound 3-7, which additionally demonstrated efficacy in a murine endotoxin challenge PK-PD mechanistic model.

View Article and Find Full Text PDF

Targeting N-Myc in neuroblastoma with selective Aurora kinase A degraders.

Cell Chem Biol

January 2025

Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

The N-Myc transcription factor, encoded by MYCN, is a mechanistically validated, yet challenging, target for neuroblastoma (NB) therapy development. In normal neuronal progenitors, N-Myc undergoes rapid degradation, while, in MYCN-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, resulting in elevated protein levels. Here, we demonstrate that targeted protein degradation of Aurora-A decreases N-Myc levels.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!