Classification of scaffold-hopping approaches.

Drug Discov Today

Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Frederick, MD 21702, USA.

Published: April 2012

The general goal of drug discovery is to identify novel compounds that are active against a preselected biological target with acceptable pharmacological properties defined by marketed drugs. Scaffold hopping has been widely applied by medicinal chemists to discover equipotent compounds with novel backbones that have improved properties. In this article we classify scaffold hopping into four major categories, namely heterocycle replacements, ring opening or closure, peptidomimetics and topology-based hopping. We review the structural diversity of original and final scaffolds with respect to each category. We discuss the advantages and limitations of small, medium and large-step scaffold hopping. Finally, we summarize software that is frequently used to facilitate different kinds of scaffold-hopping methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328312PMC
http://dx.doi.org/10.1016/j.drudis.2011.10.024DOI Listing

Publication Analysis

Top Keywords

scaffold hopping
12
classification scaffold-hopping
4
scaffold-hopping approaches
4
approaches general
4
general goal
4
goal drug
4
drug discovery
4
discovery identify
4
identify novel
4
novel compounds
4

Similar Publications

Development of Potent and Selective CK1α Molecular Glue Degraders.

J Med Chem

January 2025

Department of Chemical and Systems Biology, Stanford Cancer Institute, School of Medicine Stanford University, Stanford, California 94305-6104, United States.

Molecular glue degraders (MGDs) are small molecules that facilitate proximity between a target protein and an E3 ubiquitin ligase, thereby inducing target protein degradation. Glutarimide-containing compounds are MGDs that bind cereblon (CRBN) and recruit neosubstrates. Through explorative synthesis of a glutarimide-based library, we discovered a series of molecules that induce casein kinase 1 alpha (CK1α) degradation.

View Article and Find Full Text PDF

Identification of Novel LCN2 Inhibitors Based on Construction of Pharmacophore Models and Screening of Marine Compound Libraries by Fragment Design.

Mar Drugs

January 2025

The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, China.

LCN2, a member of the lipocalin family, is associated with various tumors and inflammatory conditions. Despite the availability of known inhibitors, none have been approved for clinical use. In this study, marine compounds were screened for their ability to inhibit LCN2 using pharmacophore models.

View Article and Find Full Text PDF

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.

View Article and Find Full Text PDF

Design, synthesis, and anti-liver fibrosis activity of novel non-steroidal vitamin D receptor agonists based on open-ring steroid scaffold.

Eur J Med Chem

January 2025

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:

Vitamin D receptor (VDR) has emerged as a crucial target for the treatment of hepatic fibrosis, a condition characterized by excessive deposition of extracellular matrix (ECM) components leading to impaired liver function. Activation of VDR has been shown to inhibit the transformation of hepatic stellate cells (HSCs), which play a key role in the development of liver fibrosis, thus reducing ECM production. In this study, a series of 37 non-steroidal VDR agonists with novel scaffold were designed and synthesized utilizing the scaffold hopping strategy.

View Article and Find Full Text PDF

Identification of a Chemical Probe for BLT2 Activation by Scaffold Hopping.

J Med Chem

January 2025

Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.

The leukotriene B4 receptor 2 (BLT2) is a G-protein coupled receptor, which is endogenously activated by 12()-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT). BLT2 is gaining attention as a potential therapeutic target involved in various pathologies including diabetic wound healing, ophthalmic diseases, and colitis. However, validation of BLT2 as drug target requires chemical probes and pharmacological tools which will allow for application in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!