We report the rational synthesis of one-dimensional SnO(2) nanowires (SnO(2)NWs) via a Sn-catalyzed vapor-liquid-solid (VLS) growth mechanism, in which Sn nanoparticles can direct the oriented growth of SnO(2)NWs at high temperature. I-V measurement of a field effect transistor made of individual SnO(2)NWs exhibits typical n-type semiconducting characteristics with an electron mobility and concentration of 14.36 cm(2) V( - 1) s( - 1) and 1.145 × 10(17) cm( - 3), respectively. The SnO(2)NW-based photodetector shows a high sensitivity to UV light radiation, and a fast light response speed of millisecond rise time/fall time with excellent stability and reproducibility, whereas it is nearly blind to illumination with wavelengths in the visible range. Detailed reasons to account for the detection selectivity and rapid response speed are proposed. The generality of the above results suggests that our SnO(2)NW photodetectors have potential application in nanoscaled optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/22/48/485701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!