NbSe(3) exhibits remarkable anisotropy in most of its physical properties and has been a model system for studies of quasi-one-dimensional charge density wave (CDW) phenomena. Herein, we report the synthesis, characterization, and electrical transport of single-crystalline NbSe(3) nanoribbons by a facile one-step vapour transport process involving the transport of selenium powder onto a niobium foil substrate. Our investigations aid the understanding of the CDW nature of NbSe(3) and the growth process of the material. They also indicate that NbSe(3) nanoribbons have enhanced CDW properties compared to those of the bulk phase due to size confinement effects, thus expanding the search for new mesoscopic phenomena at the nanoscale level. Single nanoribbon measurements of the electrical resistance as a function of temperature show charge density wave transitions at 59 and 141 K. We also demonstrate significant enhancement in the depinning effect and sliding regimes mainly attributed to finite size effects.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/22/48/485201DOI Listing

Publication Analysis

Top Keywords

charge density
12
density wave
12
synthesis characterization
8
finite size
8
size effects
8
electrical transport
8
nbse3 nanoribbons
8
nbse3
5
characterization finite
4
effects electrical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!