Functional magnetic resonance imaging (fMRI) at high magnetic field strength can suffer from serious degradation of image quality because of motion and physiological noise, as well as spatial distortions and signal losses due to susceptibility effects. Overcoming such limitations is essential for sensitive detection and reliable interpretation of fMRI data. These issues are particularly problematic in studies of awake animals. As part of our initial efforts to study functional brain activations in awake, behaving monkeys using fMRI at 4.7 T, we have developed acquisition and analysis procedures to improve image quality with encouraging results. We evaluated the influence of two main variables on image quality. First, we show how important the level of behavioral training is for obtaining good data stability and high temporal signal-to-noise ratios. In initial sessions, our typical scan session lasted 1.5 h, partitioned into short (<10 min) runs. During reward periods and breaks between runs, the monkey exhibited movements resulting in considerable image misregistrations. After a few months of extensive behavioral training, we were able to increase the length of individual runs and the total length of each session. The monkey learned to wait until the end of a block for fluid reward, resulting in longer periods of continuous acquisition. Each additional 60 training sessions extended the duration of each session by 60 min, culminating, after about 140 training sessions, in sessions that last about 4 h. As a result, the average translational movement decreased from over 500 μm to less than 80 μm, a displacement close to that observed in anesthetized monkeys scanned in a 7-T horizontal scanner. Another major source of distortion at high fields arises from susceptibility variations. To reduce such artifacts, we used segmented gradient-echo echo-planar imaging (EPI) sequences. Increasing the number of segments significantly decreased susceptibility artifacts and image distortion. Comparisons of images from functional runs using four segments with those using a single-shot EPI sequence revealed a roughly twofold improvement in functional signal-to-noise-ratio and 50% decrease in distortion. These methods enabled reliable detection of neural activation and permitted blood-oxygenation-level-dependent-based mapping of early visual areas in monkeys using a volume coil. In summary, both extensive behavioral training of monkeys and application of segmented gradient-echo EPI sequence improved signal-to-noise ratio and image quality. Understanding the effects these factors have is important for the application of high field imaging methods to the detection of submillimeter functional structures in the awake monkey brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236665 | PMC |
http://dx.doi.org/10.1016/j.mri.2011.09.010 | DOI Listing |
Arch Pathol Lab Med
January 2025
the Department of Pathology, The Ohio State University, Columbus (Parwani).
Context.—: Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.
Objective.
Int J Comput Assist Radiol Surg
January 2025
Department of Orthopaedic Surgery, Ehime University Graduate School of Medicine, Matsuyama, Japan.
Purpose: Identifying muscles linked to postoperative physical function can guide protocols to enhance early recovery following total hip arthroplasty (THA). This study aimed to evaluate the association of preoperative pelvic and thigh muscle volume and quality with early physical function after THA in patients with unilateral hip osteoarthritis (HOA).
Methods: Preoperative Computed tomography (CT) images of 61 patients (eight males and 53 females) with HOA were analyzed.
Med Biol Eng Comput
January 2025
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215613, China.
Ultrasound blood flow imaging plays a crucial role in the diagnosis of cardiovascular and cerebrovascular diseases. Conventional ultrafast ultrasound plane-wave imaging techniques have limited capabilities in microvascular imaging. To enhance the quality of blood flow imaging, this study proposes a microbubble-based H-Scan ultrasound imaging technique.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
LEESU, Ecole des Ponts Paris Tech, UPEC, AgroParisTech, F-77455 Marne-la-Vallée, Paris, France.
Urban reservoirs are frequently exposed to impacts from high population density, polluting activities, and the absence of environmental control measures and monitoring. In this study, we investigated the use of satellite imagery to assess restoration measures and support decision-making in a hypereutrophic urban reservoir. Since 2016, Lake Pampulha (Brazil) has undergone restoration measures, including the application of Phoslock®, to mitigate its poor water quality conditions.
View Article and Find Full Text PDFInt J Legal Med
January 2025
Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
Pathology has benefited from the rapid progress of image-digitizing technology during the last decade. However, the application of digital whole slide images (WSI) in forensic pathology still needs to be improved. WSI validation is crucial to ensure diagnostic performance, at least equivalent to glass slides and light microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!