The serine protease thrombin plays several key roles in the clotting cascade within the hemostatic system, such as in fibrin formation and platelet activation. Thus, development of an inhibitor that binds to the enzyme's active site (a direct thrombin inhibitor) offers an approach for the treatment of thrombus-associated diseases. Previous structure-activity relationship studies originally based on the bradykinin breakdown product Arg-Pro-Pro-Gly-Phe (RPPGF) led to the development of lead compound FM 19 (d-Arg-Oic-Pro-d-Ala-Phe(p-Me)-NH(2)). The recently determined X-ray structure of FM 19 in the active site of thrombin has revealed sites of modification to potentially improve inhibition. In this study, we report the synthesis and biological characterization of nine peptides that replace only the d-Arg residue of the FM 19 sequence, investigating ways to add conformational restriction, modification of the basic moiety at the end of the side chain, and removal of the charge from the N-terminus. Two of these peptides, 6 and 7 (IC(50) values of 0.51 and 0.45 μM, respectively), show similar potency to the best compounds in the FM 19 series reported thus far.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2011.10.045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!