The increased use of nanoparticles in industrial and medical products is driving the need for accurate, high throughput in vitro testing procedures to screen new particles for potential toxicity. While approaches using standard viability assays have been widely used, there have been increased reports of the interactions of nanoparticles with their soluble labels or optical readouts which raise concerns over the potential generation of false positive results. Here, we describe the use of an impedance spectroscopy approach to provide real-time reagent free detection of toxicity for a panel of metal oxide nanoparticles (ZnO, CuO, and TiO(2)). Using this approach, we show how impedance measurements can be used to track nanoparticle toxicity over time with comparable IC(50) values to those of standard assays (ZnO-55 μg/mL, CuO-28 μg/mL) as well as being used to identify a critical 6 h period following exposure during which the nanoparticles trigger rapid cellular responses. Through targeted analysis during this response period and the use of a novel image analysis approach, we show how the ZnO and CuO nanoparticles trigger the active export of intracellular glutathione via an increase in the activity of the ATP dependent MRP/1 efflux pumps. The loss of glutathione leads to increased production of reactive oxygen species which after 2.5 h triggers the cells to enter apoptosis resulting in a dose dependent cytotoxic response. This targeted testing strategy provides comprehensive information beyond that achieved with standard toxicity assays and indicates the potential for cell-nanoparticle interactions that could occur following in vivo exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/tx200355m | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
Nat Commun
January 2025
Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
Amine-assisted two-step CO hydrogenation is an efficient route for methanol production. To maximize the overall catalytic performance, both the N-formylation of amine with CO (i.e.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:
Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.
View Article and Find Full Text PDFChemosphere
January 2025
Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:
Chemosphere
January 2025
Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada. Electronic address:
Sulfur-oxidizing bacteria (SOB) play a vital role in the occurrence of sulfur oxidation intermediate (SOI) compounds often recalcitrant to currently available, abiotic treatment within metal mine tailings impoundments (TI). As inadvertent SOI discharge post-treatment can lead to the uncontrolled acidification of receiving environments, it becomes increasingly important to elucidate the environmental controls on SOB identities and sulfur cycling within these relatively unstudied systems. Here, results identified controlling factors on SOB community differentiation and associated metabolic pathway occurrence through integrated physicochemical, geochemical, and microbial field and experimental investigation across three summers (2016, 2017, 2021) in a stratified Northern Ontario base metal TI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!