A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Drying dip-coated colloidal films. | LitMetric

Drying dip-coated colloidal films.

Langmuir

PMMH, CNRS UMR 7636, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France.

Published: January 2012

We present the results from a small-angle X-ray scattering (SAXS) study of lateral drying in thin films. The films, initially 10 μm thick, are cast by dip-coating a mica sheet in an aqueous silica dispersion (particle radius 8 nm, volume fraction ϕ(s) = 0.14). During evaporation, a drying front sweeps across the film. An X-ray beam is focused on a selected spot of the film, and SAXS patterns are recorded at regular time intervals. As the film evaporates, SAXS spectra measure the ordering of particles, their volume fraction, the film thickness, and the water content, and a video camera images the solid regions of the film, recognized through their scattering of light. We find that the colloidal dispersion is first concentrated to ϕ(s) = 0.3, where the silica particles begin to jam under the effect of their repulsive interactions. Then the particles aggregate until they form a cohesive wet solid at ϕ(s) = 0.68 ± 0.02. Further evaporation from the wet solid leads to evacuation of water from pores of the film but leaves a residual water fraction ϕ(w) = 0.16. The whole drying process is completed within 3 min. An important finding is that, in any spot (away from boundaries), the number of particles is conserved throughout this drying process, leading to the formation of a homogeneous deposit. This implies that no flow of particles occurs in our films during drying, a behavior distinct to that encountered in the iconic coffee-stain drying. It is argued that this type of evolution is associated with the formation of a transition region that propagates ahead of the drying front. In this region the gradient of osmotic pressure balances the drag force exerted on the particles by capillary flow toward the liquid-solid front.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la203549gDOI Listing

Publication Analysis

Top Keywords

drying
8
volume fraction
8
drying front
8
wet solid
8
drying process
8
film
6
particles
6
drying dip-coated
4
dip-coated colloidal
4
films
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!