The dissociation and decomposition of carbonic acid (H2CO3) in water are important reactions in the pH regulation in blood, CO2 transport in biological systems, and the global carbon cycle. H2CO3 is known to have three conformers [cis-cis (CC), cis-trans (CT), and trans-trans (TT)], but their individual reaction dynamics in water has not been probed experimentally. In this paper, we have investigated the energetics and mechanisms of the conformational changes, dissociation (H2CO3 -->/<-- HCO3(-) + H(+)), and decomposition via the hydroxide route (HCO3(-) --> CO2+OH(-)) of all three conformers of H2CO3 in water using Car-Parrinello molecular dynamics (CPMD) in conjunction with metadynamics. It was found that, unlike in the gas phase, the interconversion between the various conformers occurs via two different pathways, one involving a change in one of the two dihedral angles (O=C-O-H) and the other a proton transfer through a hydrogen-bond wire. The free energy barriers/changes for the various conformational changes via the first pathway were calculated and contrasted with the previously calculated values for the gas phase. The CT and TT conformers were found to undergo decomposition in water via a two-step process: first, the dissociation and then the decomposition of HCO3(-) into CO2 and OH(-). The CC conformer does not directly decompose but first undergoes a conformational change to CT or TT prior to decomposition. This is in contrast with the concerted mechanism proposed for the gas phase, which involves a dehydroxylation of one of the OH groups and a simultaneous deprotonation of the other OH group to yield CO2 and H2O. The dissociation in water was seen to involve the repeated formation and breakage of a hydrogen-bond wire with neighboring water molecules, whereas the decomposition is initiated by the diffusion of H(+) away from HCO3(-); this decomposition mechanism differs from that proposed for the water route dehydration (HCO3(-) + H3O(+) --> CO2 + H2O), which involves the participation of a nearbyH3O(+) ion.Our calculated pKa values and decomposition free energy barriers for the CT and TT conformers are consistent with the overall experimental values of 3.45 and 22.28 kcal/mol, respectively, suggesting that the dynamics of the various conformers should be taken into account for a better understanding of aqueous H2CO3 chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp207752m | DOI Listing |
J Phys Chem Lett
January 2025
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi 030051, China.
DNP (3,4-dinitropyrazole) has attracted much interest due to its promising melting characteristics and high detonation performances, such as low melting point, high density, high detonation velocity, and low sensitivity. In this work, first-principles molecular dynamics (MD) simulations were performed to investigate the anisotropic shock response of DNP in conjunction with the multiscale shock technique (MSST). The initial decomposition mechanism was revealed through the evolution of the chemical reaction and product analysis.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China.
The initial decomposition reactions of 1,3,5-trinitrobenzene (TNB), picric acid (PA), 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitroaniline (TNA) and 2,4,6-trinitrophenylmethylnitramine (Tetryl) were studied using ReaxFF-lg molecular dynamics simulations, and the substituent effect on the thermal decomposition behaviours of nitrobenzene compounds was evaluated through the reactant number, initial decomposition pathway, products and cluster analysis. The results show that the introduction of substituents could promote the decomposition of the reactants, increase the frequency of the nitro-nitrito isomerization reaction and intermolecular H or O atom transfer reaction, and reduce the frequency of the direct nitro dissociation reaction. Notably, these effects were most obvious in the case of TNT.
View Article and Find Full Text PDFInt J Pharm
January 2025
Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
Hydrophobicity is associated with drug transport across membranes and is expressed as the partition coefficient log P for neutral drugs and the distribution coefficient log D for acidic and basic drugs. The log P and log D predictions are deductively (or with artificial intelligence) estimated as the sum of the partial contributions of the scaffold and substituents of a single molecule and are used widely and affirmatively. However, their predictions have not always been comprehensively accurate beyond scaffold differences.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Radical-radical reaction channels are important in the pyrolysis and oxidation chemistry of perfluoroalkyl substances (PFAS). In particular, unimolecular dissociation reactions within unbranched -perfluoroalkyl chains, and their corresponding reverse barrierless association reactions, are expected to be significant contributors to the gas-phase thermal decomposition of families of species such as perfluorinated carboxylic acids and perfluorinated sulfonic acids. Unfortunately, experimental data for these reactions are scarce and uncertain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!