The effect of ocean acidification conditions has been investigated in cultures of the diatom Thalassiosira pseudonana CCMP1335. Expected end-of-the-century pCO(2) (aq) concentrations of 760 µatm (equivalent to pH 7.8) were compared with present-day condition (380 µatm CO(2), pH 8.1). Batch culture pH changed rapidly because of CO(2) (aq) assimilation and pH targets of 7.8 and 8.1 could not be sustained. Long-term (∼100 generation) pH-auxostat, continuous cultures could be maintained at target pH when cell density was kept low (<2×10(5) cells mL(-1)). After 3 months continuous culture, the C:N ratio was slightly decreased under high CO(2) conditions and red fluorescence per cell was slightly increased. However, no change was detected in photosynthetic efficiency (F(v)/F(m)) or functional cross section of PS II (σ(PSII)). Elevated pCO(2) has been predicted to be beneficial to diatoms due to reduced cost of carbon concentration mechanisms. There was reduced transcription of one putative δ-carbonic anhydrase (CA-4) after 3 months growth at increased CO(2) but 3 other δ-CAs and the small subunit of RUBISCO showed no change. There was no evidence of adaptation or clade selection of T. pseudonana after ∼100 generations at elevated CO(2). On the basis of this long-term culture, pH change of this magnitude in the future ocean may have little effect on T. pseudonana in the absence of genetic adaption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203894PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026695PLOS

Publication Analysis

Top Keywords

thalassiosira pseudonana
8
response thalassiosira
4
pseudonana long-term
4
long-term exposure
4
exposure increased
4
increased co2
4
co2 decreased
4
decreased ocean
4
ocean acidification
4
acidification conditions
4

Similar Publications

Diatom phytochromes integrate the underwater light spectrum to sense depth.

Nature

December 2024

CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France.

Aquatic life is strongly structured by the distribution of light, which, besides attenuation in intensity, exhibits a continuous change in the spectrum with depth. The extent to which these light changes are perceived by phytoplankton through photoreceptors is still inadequately known. We addressed this issue by integrating functional studies of diatom phytochrome (DPH) photoreceptors in model species with environmental surveys of their distribution and activity.

View Article and Find Full Text PDF

Structures of PSI-FCPI from Thalassiosira pseudonana grown under high light provide evidence for convergent evolution and light-adaptive strategies in diatom FCPIs.

J Integr Plant Biol

December 2024

Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for light harvesting and energy quenching under marine environments. Here we report two cryo-electron microscopic structures of photosystem I (PSI) with either 13 or five fucoxanthin chlorophyll a/c-binding protein Is (FCPIs) at 2.78 and 3.

View Article and Find Full Text PDF

The use of microalgae as a feedstock in biofuel production is highly encouraging. The marine diatom in this study, Thalassiosira pseudonana, was used as a test organism to evaluate the impact of nitrogen or phosphorus limitation and sewage water on improving biodiesel production. The growth rate is more affected in cultures without phosphorus by 41.

View Article and Find Full Text PDF
Article Synopsis
  • Photosynthetic organisms have diverse light-harvesting complexes (LHCs) that connect with photosystem I (PSI) to form supercomplexes, but their binding mechanisms are not fully understood.* -
  • This study determined the structure of a PSI supercomplex containing fucoxanthin chlorophyll-binding proteins (FCPs) from the diatom CCMP1335, identifying five specific FCPI subunits.* -
  • Structural analyses revealed important protein interactions and evolutionary conservation of motifs that help FCPI subunits selectively bind to PSI, advancing our understanding of diatom assembly processes.*
View Article and Find Full Text PDF

UV-B radiation aging changed the environmental behavior of polystyrene micro-/nanoplastics-adsorption kinetics of BDE-47, plankton toxicities and joint toxicities with BDE-47.

J Hazard Mater

December 2024

College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China. Electronic address:

Article Synopsis
  • UV-B radiation significantly alters the physical and chemical properties of floating polystyrene micro-/nanoplastics (MNPs) in marine environments, leading to rougher surfaces, increased hydrophobicity, and altered charge characteristics after 30 days of exposure.
  • Aged MNPs demonstrate a greater capacity to adsorb the toxic compound BDE-47, which affects their individual and combined toxicities to certain marine species like Thalassiosira pseudonana and Brachionus plicatilis.
  • The study highlights the ecological implications of MNP changes due to UV-B radiation, emphasizing the need for further research on their environmental behaviors and impacts on marine life.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!