In this study, a sequential extraction method using water and methanol to recover ethylene glycol dinitrate or nitroglycol (EGDN) contained in Goma-2 ECO dynamite was developed. After, an HPLC method was used for the determination of EGDN in the two extracted phases. The analytical method was validated by evaluating its selectivity, sensitivity, linearity, and linear working concentration range, limit of detection and quantitation, precision (as repeatability and intermediate precision), accuracy, and robustness, providing appropriate values (i.e. RSD values for precision about 6% and accuracy about 100%). Finally, the EGDN content of a sample of the Goma-2-ECO dynamite was determined obtaining a concentration of 30.29%, which is in accordance with the manufacturer's specifications for this dynamite (25.7-31.4%).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201100523DOI Listing

Publication Analysis

Top Keywords

ethylene glycol
8
glycol dinitrate
8
goma-2 eco
8
precision accuracy
8
determination ethylene
4
dinitrate dynamites
4
dynamites hplc
4
hplc application
4
application plastic
4
plastic explosive
4

Similar Publications

This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established empirically tailored parameters [E = 0.3 kV/cm (U = 3 kV, d = 10 cm), t = 50 µs, N = 33 f = 1 Hz] was applied 1-3 times to roots submerged in four different Natural Deep Eutectic Solvents (NADES) media (1-choline chloride/xylose (1:2) + 30% water, 2-choline chloride/glucose (1:2) + 30% water, 3-choline chloride/ethylene glycol (1:2), and 4-tap water (EC = 0.

View Article and Find Full Text PDF

The popularity of 3D printing technology is rapidly increasing worldwide. It can be applied to metals, ceramics, composites, hybrids, and polymers. Three-dimensional printing has the potential to replace conventional manufacturing technologies because it is cost effective and environmentally friendly.

View Article and Find Full Text PDF

Kinetic Aspects of Ethylene Glycol Degradation Using UV-C Activated Hydrogen Peroxide (HO/UV-C).

Molecules

December 2024

Research and Educational Center "Institute of Chemical Technologies", Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090, Russia.

Ethylene glycol (EG) is a contaminant in the wastewater of airports because it is commonly used in aircraft deicing fluids during the cold season in northern regions. Ethylene glycol by itself has relatively low toxicity to mammals and aquatic organisms, but it can lead to a substantial increase in chemical and biological oxygen demands. The contamination of water with EG facilitates the rapid growth of microbial biofilms, which decreases the concentration of dissolved oxygen in water and negatively affects overall biodiversity.

View Article and Find Full Text PDF

3D-printed poly(ethylene) glycol diacrylate (PEGDA)-chitosan-nanohydroxyapatite scaffolds: Structural characterization and cellular response.

Int J Biol Macromol

January 2025

Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia. Electronic address:

Polymer-based scaffolds with bioactive materials offer great potential in bone tissue engineering. Polyethylene glycol diacrylate (PEGDA) scaffolds fabricated via liquid crystal display 3D printing technique lack inherent osteoconductivity. To improve such properties, chitosan of 10 and 20 wt% and nanohydroxyapatite (nHA) (3-10 wt%) were incorporated into PEGDA scaffolds.

View Article and Find Full Text PDF

Curcumin is an antioxidant and anti-inflammatory molecule that may provide neuroprotection following central nervous system (CNS) injury. However, curcumin is hydrophobic, limiting its ability to be loaded and then released from biomaterials for neural applications. We previously developed polymers containing curcumin, and these polymers may be applied to neuronal devices or to neural injury to promote neuroprotection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!