We demonstrate InGaAs mid-infrared quantum well infrared photodetectors (MIR PV-QWIPs) that enable cost-effective mature GaAs-based detection and imaging technologies, with exceptional material uniformity, reproducibility, and yield, over a large area, with high spectral selectivity, innate polarization sensitivity, radiation hardness, high detectivity, and high speed operation at TEC temperatures without bias.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201103372 | DOI Listing |
Sensors (Basel)
January 2025
Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.
Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
Antimonide laser diodes, with their high performance above room temperature, exhibit significant potential for widespread applications in the mid-infrared spectral region. However, the laser's performance significantly degrades as the emission wavelength increases, primarily due to severe quantum-well hole leakage and significant non-radiative recombination. In this paper, we put up an active region with a high valence band offset and excellent crystalline quality with high luminescence to improve the laser's performance.
View Article and Find Full Text PDFNanophotonics
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, and Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China.
The realization of room-temperature-operated, high-performance, miniaturized, low-power-consumption and Complementary Metal-Oxide-Semiconductor (CMOS)-compatible mid-infrared photodetectors is highly desirable for next-generation optoelectronic applications, but has thus far remained an outstanding challenge using conventional materials. Two-dimensional (2D) heterostructures provide an alternative path toward this goal, yet despite continued efforts, their performance has not matched that of low-temperature HgCdTe photodetectors. Here, we push the detectivity and response speed of a 2D heterostructure-based mid-infrared photodetector to be comparable to, and even superior to, commercial cooled HgCdTe photodetectors by utilizing a vertical transport channel (graphene/black phosphorus/molybdenum disulfide/graphene).
View Article and Find Full Text PDFFood Chem
December 2024
School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1142, New Zealand; Te Pūnaha Matatini, Auckland, 1142, New Zealand. Electronic address:
Chemometrics; use of statistical models to characterise and understand complex chemical systems/samples, is an advancing field. In the dairy industry, the accurate prediction of milk composition involves combining mid-infrared spectroscopy with chemometric techniques for the evaluation of major constituents of milk. The increased interest in determination of detailed composition of dairy products, alongside emerging and more-widespread use of chemometric methodologies, have generated continuous improvement in predictive models for this application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!