A new type of host compound (1), tetraphenyl zinc-porphyrin (ZnTPP) that contains four triazole groups at the ortho-position of each phenyl group, has been synthesized and characterized by using (1)H, (13)C NMR, and MALDI-TOF-MS analyses. The host-guest complex formation between 1 and halides was investigated by using (1)H NMR spectroscopy in [D(6)]DMSO. The triazole, benzyl, and phenylene proton signals were shifted upfield by the addition of halides in the form of tetrabutylammonium salts, which implies that the triazole protons in 1 are allocated very closely to the porphyrin ring and are directed toward the binding pocket over the porphyrin ring during the formation of hydrogen bonds. The UV/Vis absorption spectra showed that both the Soret and Q band absorptions of 1 underwent a strong redshift due to the addition of halides. Compound 1 exhibited surprisingly strong binding affinities for the halides, where the association constants for Cl(-), Br(-), and I(-) binding were estimated to be larger than 10(8), 1.79×10(7), and 1.84×10(5) M(-1), respectively. The UV/Vis absorption changes and the result of competitive titration using 4-tert-butylpyridine indicated that the cooperative effects of axial coordination and C-H···X hydrogen bond interactions resulted in the strong binding affinity of 1 to halides.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201101884DOI Listing

Publication Analysis

Top Keywords

strong binding
12
binding affinity
8
cooperative effects
8
hydrogen bonds
8
addition halides
8
porphyrin ring
8
uv/vis absorption
8
halides
6
strong
4
affinity zinc-porphyrin-based
4

Similar Publications

The ongoing increase in the prevalence and mutation rate of the influenza virus remains a critical global health issue. A promising strategy for antiviral drug development involves targeting the RNA-dependent RNA polymerase, specifically the PB2-cap binding domain of Influenza A H5N1. This study employs an in-silico approach to inhibit this domain, crucial for viral replication, using potential inhibitors derived from marine bacterial compounds.

View Article and Find Full Text PDF

Unlabelled: Breast cancer remains a global health challenge, with rising cases predicted in the coming decades. The complexity of breast cancer treatment arises from its complex nature, often involving multiple therapeutic strategies. One promising approach is targeting the ERK5 pathway, a key regulator in cancer cell proliferation and survival.

View Article and Find Full Text PDF

Background: Our research highlights the synthesis of newer antimalarial compounds using molecular modeling studies.

Objective: The study investigates a series of isocryptolepine derivatives from previous literature, focusing on their biological activities as antimalarial agents.

Methods: Computational methods such as molecular docking and QSAR were employed to gain insights into the interaction between the synthesized compounds and the target enzyme PfDHFR-TS.

View Article and Find Full Text PDF

Although atomoxetine, a selective norepinephrine reuptake inhibitor, is widely used in the treatment of attention-deficit/hyperactivity disorder (ADHD), there is limited data on its cytogenetic effects. This study aimed to investigate the cytotoxicity and genotoxicity of atomoxetine and . Chromosome aberration and micronucleus assays were used to analyze the genotoxic effect of atomoxetine in human peripheral blood lymphocytes under culture conditions.

View Article and Find Full Text PDF

Background: Renal fibrosis is crucial in the progression of chronic kidney disease (CKD) to end-stage renal failure. Geniposide, an iridoid glycoside, has shown therapeutic potential in acute kidney injury, diabetic nephropathy, and atherosclerosis. The aim of this study was to investigate the role of geniposide in renal fibrosis and its underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!