Autozygosity mapping has been a powerful method for the identification of autosomal recessive disease genes. However, the approach is limited by the availability of suitable consanguineous pedigrees. While rare autosomal recessive diseases are overrepresented in consanguineous families, a significant proportion of affected patients nonetheless originate in families where the parents are apparently unrelated. However, due to their relative rarity and the heterogeneity of disease alleles, it has proved difficult to use these patients to identify disease loci. Therefore, we developed "Phaser," a computer application that is able to infer the phase of SNP alleles and so haplotype entire chromosomes in small nuclear families (http://dna.leeds.ac.uk/Phaser). Once the index case's chromosomes have been haplotyped, it is then possible to deduce those of the parents and subsequently identify the parental origin of all the siblings' DNA. By combining information from a small number of nuclear families, it may then be possible to identify linkage to the recessive disease locus, in both in-bred and out-bred families. We have illustrated the program's utility by using it to correctly identify both the cystic fibrosis locus (using two unrelated compound heterozygous CEPH families) and a new gene mutated in early-onset myopathy with respiratory distress and dysphagia locus in a single consanguineous pedigree.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/humu.21645 | DOI Listing |
J Clin Lipidol
December 2024
Internal Medicine Department, Coimbra's Healthcare Integrated Delivery System, Praceta Professor Mota Pinto, 3004-561, Coimbra, Portugal.
Tangier disease is an extremely rare autosomal recessive monogenic disorder caused by mutations in the ATP binding cassette transporter A1 gene (ABCA1). It is characterized by severe deficiency or absence of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA1), with highly variable clinical presentations depending on cholesterol accumulation in macrophages across different tissues. We report a case of a 47-year-old man with very low HDL-C and very high triglyceride levels, initially attributed to the patient's metabolic syndrome, alcohol abuse, and splenomegaly.
View Article and Find Full Text PDFJ Clin Med
January 2025
Hanoi Medical University, 1st Ton That Tung Street, Hanoi 11521, Vietnam.
: Sitosterolemia is a rare autosomal recessive disorder characterized by diverse clinical manifestations ranging from asymptomatic cases to the development of xanthomas, hypercholesterolemia, premature atherosclerosis, or even sudden death during childhood. It results from homozygous or compound heterozygous pathogenic variants in the or genes. Prompt detection and intervention are essential to managing this condition and preventing severe outcomes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia.
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient model is needed to screen therapeutic agents under development.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
belongs to the unconventional myosin superfamily, and the myosin IIIa protein localizes on the tip of the stereocilia of vestibular and cochlear hair cells. Deficiencies in have been reported to cause the deformation of hair cells into abnormally long stereocilia with an increase in spacing. is a rare causative gene of autosomal recessive sensorineural hearing loss (DFNB30), with only 13 cases reported to date.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
Background/objectives: The gene is responsible for autosomal recessive non-syndromic sensorineural hearing loss and is assigned as DFNB18B. To date, 44 causative variants have been reported to cause non-syndromic hearing loss. However, the detailed clinical features for -associated hearing loss remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!