A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Patterning cells and shear flow conditions: convenient observation of endothelial cell remoulding, enhanced production of angiogenesis factors and drug response. | LitMetric

Patterning cells and shear flow conditions: convenient observation of endothelial cell remoulding, enhanced production of angiogenesis factors and drug response.

Lab Chip

Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences and State Key Laboratory of Virology, Wuhan University, Wuhan 430072, P. R. China.

Published: December 2011

We present a method that allows patterning cells and shear flow conditions for endothelial cell based assays. This method is novel in combining (1) cell culture on the surface of a substrate both topographically and chemically patterned; (2) multi-shear flow assays after covering the cell substrate with a microfluidic cover plate containing microchannels of different channel widths, and (3) conventional immunostaining assays after removal of the cover plate. This method has the advantage of performing cell cultures and immunoassays in standard cell biology environments with open access, facilitating the formation of confluent cell layers and the observation of cell responses to shear-flow and drug stimulations. To obtain multi-shear stress conditions, a single channel with stepwise increasing channel widths was patterned on the surfaces of both the substrate and the microfluidic cover plate. As results, we observed excellent viability of endothelial cells in the whole range of applied shear stresses (0-25 dyn cm(-2)) and shear stress dependent cytoskeleton remoulding, activation of von Willebrand factor (vWF), and re-organisation of angiogenesis factors such as tetra peptide acetyl-Ser-Asp-Lys-Pro (AcSDKP) of endothelial cells. To validate this approach for drug analysis, we also studied drug effects under shear stress conditions. Our results indicate that the drug effect of combretastatin A-4, an anti-tumour vascular targeting drug, could be significantly enhanced under shear flow conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1lc20722aDOI Listing

Publication Analysis

Top Keywords

shear flow
12
flow conditions
12
cover plate
12
patterning cells
8
cells shear
8
cell
8
endothelial cell
8
angiogenesis factors
8
substrate microfluidic
8
microfluidic cover
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!