Novel genetic reassortants in H9N2 influenza A viruses and their diverse pathogenicity to mice.

Virol J

Center for Molecular Virology, Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

Published: November 2011

Background: H9N2 influenza A viruses have undergone extensive reassortments in different host species, and could lead to the epidemics or pandemics with the potential emergence of novel viruses.

Methods: To understand the genetic and pathogenic features of early and current circulating H9N2 viruses, 15 representative H9N2 viruses isolated from diseased chickens in northern China between 1998 and 2010 were characterized and compared with all Chinese H9N2 viruses available in the NCBI database. Then, the representative viruses of different genotypes were selected to study the pathogenicity in mice with the aim to investigate the adaptation and the potential pathogenicity of the novel H9N2 reassortants to mammals.

Results: Our results demonstrated that most of the 15 isolates were reassortants and generated four novel genotypes (B62-B65), which incorporated the gene segments from Eurasian H9N2 lineage, North American H9N2 branch, and H5N1 viruses. It was noteworthy that the newly identified genotype B65 has been prevalent in China since 2007, and more importantly, different H9N2 influenza viruses displayed a diverse pathogenicity to mice. The isolates of the 2008-2010 epidemic (genotypes B55 and B65) were lowly infectious, while two representative viruses of genotypes B0 and G2 isolated from the late 1990s were highly pathogenic to mice. In addition, Ck/SD/LY-1/08 (genotype 63, containing H5N1-like NP and PA genes) was able to replicate well in mouse lungs with high virus titers but caused mild clinical signs.

Conclusion: Several lines of evidence indicated that the H9N2 influenza viruses constantly change their genetics and pathogenicity. Thus, the genetic evolution of H9N2 viruses and their pathogenicity to mammals should be closely monitored to prevent the emergence of novel pandemic viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236014PMC
http://dx.doi.org/10.1186/1743-422X-8-505DOI Listing

Publication Analysis

Top Keywords

h9n2 influenza
16
influenza viruses
16
h9n2 viruses
16
viruses
12
pathogenicity mice
12
h9n2
11
diverse pathogenicity
8
emergence novel
8
representative viruses
8
viruses genotypes
8

Similar Publications

Isoleucine at position 137 of Hemagglutinin acts as a Mammalian adaptation marker of H9N2 Avian influenza virus.

Emerg Microbes Infect

January 2025

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China.

The H9N2 subtype of avian influenza virus (AIV) is widely distributed among poultry and wild birds and is also a threat to humans. During AIV active surveillance in Liaoning province from 2015 to 2016, we identified ten H9N2 strains exhibiting different lethality to chick embryos. Two representative strains, A/chicken/China/LN07/2016 (CKLN/07) and A/chicken/China/LN17/2016 (CKLN/17), with similar genomic background but different chick embryo lethality, were chosen to evaluate the molecular basis for this difference.

View Article and Find Full Text PDF

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

Between 21 September and 6 December 2024, 657 highly pathogenic avian influenza (HPAI) A(H5N1) and A(H5N5) virus detections were reported in domestic (341) and wild (316) birds across 27 countries in Europe. Many HPAI outbreaks in domestic birds were clustered in areas with high poultry density and characterised by secondary farm-to-farm spread. Waterfowl, particularly the mute swan, were primarily affected during this reporting period, with HPAI virus detections focused on south-eastern Europe.

View Article and Find Full Text PDF

Random forest algorithm reveals novel sites in HA protein that shift receptor binding preference of the H9N2 avian influenza virus.

Virol Sin

December 2024

Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou 510642, China. Electronic address:

A switch from avian-type α-2,3 to human-type α-2,6 receptors is an essential element for the initiation of a pandemic from an avian influenza virus. Some H9N2 viruses exhibit a preference for binding to human-type α-2,6 receptors. This identifies their potential threat to public health.

View Article and Find Full Text PDF

To prevent H9N2 avian influenza virus (AIV) and Avian metapneumonovirus/C (aMPV/C) infections, we constructed recombinant aMPV/C viruses expressing the HA protein of H9N2 AIV. In addition, EGFP was inserted into the intermediate non-coding region of P-M protein in the aMPV/C genome using a reverse genetic system. The conditions for rescuing the recombinant virus were enhanced followed by insertion of the H9N2 AIV HA gene into the same location in the aMPV/C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!